找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning - ICANN 2011; 21st International C Timo Honkela,W?odzis?aw Duch,Samuel Kaski Conference pro

[復(fù)制鏈接]
樓主: MIFF
21#
發(fā)表于 2025-3-25 05:21:23 | 只看該作者
22#
發(fā)表于 2025-3-25 09:58:04 | 只看該作者
https://doi.org/10.1007/978-3-662-31589-7ifier we can additionally apply the Particle Swarm Optimization algorithm to tune its free parameters. Our experimental results show that by applying Particle Swarm Optimization on the Sub-class Linear Discriminant Error Correcting Output Codes framework we get a significant improvement in the classification performance.
23#
發(fā)表于 2025-3-25 15:04:35 | 只看該作者
24#
發(fā)表于 2025-3-25 17:56:55 | 只看該作者
Optimizing Linear Discriminant Error Correcting Output Codes Using Particle Swarm Optimization,ifier we can additionally apply the Particle Swarm Optimization algorithm to tune its free parameters. Our experimental results show that by applying Particle Swarm Optimization on the Sub-class Linear Discriminant Error Correcting Output Codes framework we get a significant improvement in the classification performance.
25#
發(fā)表于 2025-3-25 22:56:48 | 只看該作者
26#
發(fā)表于 2025-3-26 01:59:13 | 只看該作者
27#
發(fā)表于 2025-3-26 06:25:15 | 只看該作者
Fermat’s Last Theorem for Amateursn provides a fast adjustment of the BCI system to mild changes of the signal. The proposed algorithm was validated on artificial and real data sets. In comparison to generic Multi-Way PLS, the recursive algorithm demonstrates good performance and robustness.
28#
發(fā)表于 2025-3-26 11:41:09 | 只看該作者
Fermat’s Last Theorem for Amateursed for regression problems of big and complex datasets. It was applied to the problem of steel temperature prediction in the electric arc furnace in order to decrease the process duration at one of the steelworks.
29#
發(fā)表于 2025-3-26 15:25:16 | 只看該作者
30#
發(fā)表于 2025-3-26 17:54:32 | 只看該作者
Weakly Supervised Learning of Foreground-Background Segmentation Using Masked RBMs,very weak supervision. The model generates plausible samples and performs foreground-background segmentation. We demonstrate that representing foreground objects independently of the background can be beneficial in recognition tasks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 11:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华坪县| 安平县| 荔浦县| 嵊泗县| 正阳县| 夏河县| 泸溪县| 肇庆市| 漠河县| 大英县| 遵义市| 凯里市| 杭州市| 石泉县| 武清区| 文水县| 漠河县| 香港| 长宁县| 金堂县| 永丰县| 河北区| 文昌市| 武宣县| 隆尧县| 文登市| 宾川县| 东光县| 淅川县| 酒泉市| 南开区| 郯城县| 腾冲县| 东辽县| 伊金霍洛旗| 毕节市| 建德市| 上饶县| 望谟县| 安顺市| 始兴县|