找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Nets and Genetic Algorithms; Proceedings of the I David W. Pearson,Nigel C. Steele,Rudolf F. Albrech Conference proceedin

[復(fù)制鏈接]
樓主: sustained
31#
發(fā)表于 2025-3-27 00:58:52 | 只看該作者
32#
發(fā)表于 2025-3-27 04:21:02 | 只看該作者
https://doi.org/10.1007/978-1-4020-6835-5y are continuous systems. A frequently used problem domain to check this are the well-known trajectory tracking problems. Some new problems of this problem domain are defined in this paper. The experiments are carried out with the generalized recurrent neural networks and solutions are found for each trajectory of the problem domain.
33#
發(fā)表于 2025-3-27 06:36:13 | 只看該作者
https://doi.org/10.1057/9781137454928s implemented with a multiplexer 2/1 whose output is differentiable with respect to all of its inputs, thus enabling the derivatives to be propagated through the network. The relevance of input vectors is learned together with the weights of the network using a gradient-based algorithm.
34#
發(fā)表于 2025-3-27 10:28:31 | 只看該作者
Normativity, Feminism, and PoliticsSVM, with special proprieties and high discrimination ability. We have applied this kernel in the pattern recognition, and we have compare the different performances of many other kernels, results show that the new kernel is very performant.
35#
發(fā)表于 2025-3-27 14:19:08 | 只看該作者
36#
發(fā)表于 2025-3-27 18:51:07 | 只看該作者
Generalized recurrent neural networks and continuous dynamic systems,y are continuous systems. A frequently used problem domain to check this are the well-known trajectory tracking problems. Some new problems of this problem domain are defined in this paper. The experiments are carried out with the generalized recurrent neural networks and solutions are found for each trajectory of the problem domain.
37#
發(fā)表于 2025-3-28 00:55:17 | 只看該作者
38#
發(fā)表于 2025-3-28 04:05:24 | 只看該作者
,β_SVM a new Support Vector Machine kernel,SVM, with special proprieties and high discrimination ability. We have applied this kernel in the pattern recognition, and we have compare the different performances of many other kernels, results show that the new kernel is very performant.
39#
發(fā)表于 2025-3-28 09:21:38 | 只看該作者
Optimal neighbourhood and model quality indicators,dly be verified when a little number of samples is given, which is the most frequent case in practice. We follow a local approach on the basis of an optimal neighbourhood choice. We use this neighbourhood to predict as well as to give some simple model quality indicators for any sample.
40#
發(fā)表于 2025-3-28 13:49:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 20:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新建县| 高安市| 高雄县| 顺平县| 凉山| 阜康市| 邵阳县| 乐业县| 凤山市| 海阳市| 台江县| 阜阳市| 都江堰市| 平遥县| 金门县| 凤阳县| 莱阳市| 安徽省| 剑阁县| 凤冈县| 阜平县| 林周县| 大关县| 尼木县| 横峰县| 阳谷县| 揭阳市| 北流市| 句容市| 长春市| 天镇县| 石楼县| 都安| 玉树县| 大方县| 安多县| 灌阳县| 舞钢市| 蒙自县| 盐边县| 上杭县|