找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence. ECAI 2023 International Workshops; XAI^3, TACTIFUL, XI- S?awomir Nowaczyk,Przemys?aw Biecek,Vania Dimitrov Confere

[復(fù)制鏈接]
樓主: 與生
41#
發(fā)表于 2025-3-28 16:47:55 | 只看該作者
42#
發(fā)表于 2025-3-28 19:11:52 | 只看該作者
A. M. Gaines,B. A. Peterson,O. F. Mendoza models by generating human-understandable explanations. The existing literature encompasses a diverse range of techniques, each relying on specific theoretical assumptions and possessing its own advantages and disadvantages. Amongst the available choices, hypercube-based SKE techniques are notable
43#
發(fā)表于 2025-3-29 01:11:57 | 只看該作者
Analog weight adaptation hardware,and potential of interpretable machine learning, in particular PIP-Net, for automated diagnosis support on real-world medical imaging data. PIP-Net learns human-understandable prototypical image parts and we evaluate its accuracy and interpretability for fracture detection and skin cancer diagnosis.
44#
發(fā)表于 2025-3-29 06:08:45 | 只看該作者
The Vector Decomposition Method,hods, they frequently assign importance to features which lack causal influence on the outcome variable. Selecting causally relevant features among those identified as relevant by these methods, or even before model training, would offer a solution. Feature selection methods utilizing information th
45#
發(fā)表于 2025-3-29 08:37:15 | 只看該作者
https://doi.org/10.1007/978-3-319-76864-9is paper focuses on using model-based trees as surrogate models which partition the feature space into interpretable regions via decision rules. Within each region, interpretable models based on additive main effects are used to approximate the behavior of the black box model, striking for an optima
46#
發(fā)表于 2025-3-29 11:51:25 | 只看該作者
47#
發(fā)表于 2025-3-29 19:18:06 | 只看該作者
48#
發(fā)表于 2025-3-29 23:10:12 | 只看該作者
49#
發(fā)表于 2025-3-30 01:47:37 | 只看該作者
Artificial Intelligence. ECAI 2023 International Workshops978-3-031-50396-2Series ISSN 1865-0929 Series E-ISSN 1865-0937
50#
發(fā)表于 2025-3-30 06:57:44 | 只看該作者
https://doi.org/10.1007/978-3-031-50396-2Artificial Intelligence; Machine Learning; Multi-Agent Systems; Reliability of Artificial Intelligence;
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 04:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
英德市| 诸城市| 汝南县| 临猗县| 石台县| 阆中市| 封开县| 共和县| 张家口市| 绥棱县| 察哈| 贵溪市| 巨鹿县| 普格县| 通榆县| 迁安市| 谷城县| 山西省| 河南省| 基隆市| 宣城市| 建瓯市| 宜宾县| 石家庄市| 贵州省| 高碑店市| 肇州县| 亚东县| 丰台区| 卢湾区| 鹿邑县| 墨竹工卡县| 宝丰县| 宜州市| 高雄市| 德阳市| 宝鸡市| 玉门市| 库伦旗| 肇东市| 玉树县|