找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence on Fashion and Textiles; Proceedings of the A Wai Keung Wong Conference proceedings 2019 Springer Nature Switzerlan

[復(fù)制鏈接]
樓主: 相似
41#
發(fā)表于 2025-3-28 18:15:28 | 只看該作者
Costume Expert Recommendation System Based on Physical Features,erence engine, namely, blackboard model algorithms to obtain the recommended costume that suits the physical features of the customer. Therefore, the proposed system provides customers an intelligent costume recommendation strategy in accordance with SVM and Expert System.
42#
發(fā)表于 2025-3-28 19:36:34 | 只看該作者
Sparse Discriminant Principle Component Analysis,vatives, the number of the modified PCs of SDPCA is not limited by the number of class, namely, SDPCA can address the small-class problem in LSR based methods. To solve the optimization problem, we also propose a new algorithm. Experimental results on product dataset, face dataset and character dataset demonstrate the effectiveness of SDPCA.
43#
發(fā)表于 2025-3-29 02:13:32 | 只看該作者
The CF+TF-IDF TV-Program Recommendation,is to infer users’ preference from their viewing habits and the program type they choose. By using CF+TF-IDF, we build a TV-program recommendation model, aiming at improving users’ viewing experience.
44#
發(fā)表于 2025-3-29 03:34:15 | 只看該作者
45#
發(fā)表于 2025-3-29 07:18:10 | 只看該作者
Sikhar Patranabis,Debdeep Mukhopadhyayages, the network model can efficiently extract discriminative features and achieve a retrieval accuracy of 99.89% on our test set. This performance maintains well when simpler deep architecture is used, but decreases quickly if the contents of fed fabric image are reduced.
46#
發(fā)表于 2025-3-29 12:31:36 | 只看該作者
47#
發(fā)表于 2025-3-29 18:33:33 | 只看該作者
Network Configurations and Models,clothing knowledge base and clarify the recommendation rules. Considering the characteristics of the customers and the selection criteria, this system can make personalized clothing recommendation scheme for customers and ensure the rationality of the recommendation results.
48#
發(fā)表于 2025-3-29 22:40:04 | 只看該作者
Sikhar Patranabis,Debdeep Mukhopadhyayated information to the classic itti visual attention model, we achieve the multi-object attention model of the clothing style. And based on this we implemented the autonomous development of clothing style recognition by Multi-Layer In-place Learning Network (MILN in short). Experiments prove the feasibility and effectiveness of our model.
49#
發(fā)表于 2025-3-29 23:59:35 | 只看該作者
A Clothing Recommendation System Based on Expert Knowledge,clothing knowledge base and clarify the recommendation rules. Considering the characteristics of the customers and the selection criteria, this system can make personalized clothing recommendation scheme for customers and ensure the rationality of the recommendation results.
50#
發(fā)表于 2025-3-30 06:31:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 11:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和林格尔县| 化州市| 射洪县| 建平县| 江华| 射洪县| 庄河市| 平原县| 兴义市| 恩平市| 张家川| 马龙县| 沭阳县| 河北区| 郎溪县| 宣武区| 黑水县| 晋城| 水富县| 义马市| 靖边县| 漯河市| 石门县| 西盟| 太仆寺旗| 荔波县| 惠州市| 舞阳县| 黄山市| 泗水县| 晴隆县| 宜城市| 得荣县| 汉沽区| 北辰区| 都兰县| 黑龙江省| 阆中市| 都江堰市| 金沙县| 青海省|