找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Radiation Therapy; First International Dan Nguyen,Lei Xing,Steve Jiang Conference proceedings 2019 Springer Nat

[復(fù)制鏈接]
樓主: 空隙
11#
發(fā)表于 2025-3-23 13:11:06 | 只看該作者
Individualized 3D Dose Distribution Prediction Using Deep Learning,tion. Qualitative measurements have showed analogous dose distributions and DVH curves compared to the true dose distribution. Quantitative measurements have demonstrated that our model can precisely predict the dose distribution with various trade-offs for different patients, with the largest mean
12#
發(fā)表于 2025-3-23 17:32:58 | 只看該作者
Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy,thod includes a multi-task learning framework that combines a convolutional feature extraction and an embedded regression and classification based shape modeling. This enables the network to predict the deformable shape of an organ. We show that generative neural network-based shape modeling trained
13#
發(fā)表于 2025-3-23 18:13:42 | 只看該作者
14#
發(fā)表于 2025-3-24 02:01:02 | 只看該作者
CBCT-Based Synthetic MRI Generation for CBCT-Guided Adaptive Radiotherapy, CBCT to MRI, which constrains the model by forcing a one-to-one mapping. A fully convolution neural network (FCN) with U-Net architecture is used in the generator to enable end-to-end CBCT-to-MRI transformations. Dense blocks and self-attention strategy are used to learn the information to well rep
15#
發(fā)表于 2025-3-24 05:42:40 | 只看該作者
https://doi.org/10.1057/978-1-137-46178-0ss this, a reinforcement learning application of guided Monte Carlo tree search (GTS) was implemented, coupled with SL to guide the traversal through the tree, and update the fitness values of its nodes. To test the feasibility of GTS, 13 test prostate cancer patients were evaluated. Our results sho
16#
發(fā)表于 2025-3-24 09:32:18 | 只看該作者
Orienting Frameworks and Concepts, symmetry in calculating image saliency of MRI images. The ratio of mean saliency value (RSal) from the propagated nodal volume on a weekly image to the mean saliency value of the pre-treatment nodal volume was calculated to assess whether the nodal volume shrank significantly. We evaluated our meth
17#
發(fā)表于 2025-3-24 13:18:55 | 只看該作者
18#
發(fā)表于 2025-3-24 17:31:44 | 只看該作者
Orienting Frameworks and Concepts,ed by using the deep learning model and the actual position of the prostate were compared quantitatively. Differences between the predicted target positions using DNN and their actual positions are (mean ± standard deviation) . mm, . mm, and 1.64 ± 0.28 mm in anterior-posterior, lateral, and oblique
19#
發(fā)表于 2025-3-24 19:00:10 | 只看該作者
20#
發(fā)表于 2025-3-24 23:15:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 09:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尉氏县| 涡阳县| 峨山| 南川市| 昌黎县| 涡阳县| 洪泽县| 兴安盟| 手机| 乌拉特后旗| 吉木萨尔县| 邳州市| 满洲里市| 龙江县| 晋州市| 舟曲县| 绥阳县| 邹平县| 裕民县| 石柱| 贡嘎县| 昌都县| 同德县| 松潘县| 新乐市| 沅陵县| 西贡区| 凤凰县| 册亨县| 视频| 巢湖市| 长寿区| 红安县| 越西县| 平安县| 嘉兴市| 改则县| 长武县| 方山县| 滨州市| 漯河市|