找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Ophthalmology; Andrzej Grzybowski Book 2021 Springer Nature Switzerland AG 2021 Automatic software.Deep learnin

[復(fù)制鏈接]
查看: 31599|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:59:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Artificial Intelligence in Ophthalmology
影響因子2023Andrzej Grzybowski
視頻videohttp://file.papertrans.cn/163/162513/162513.mp4
發(fā)行地址Reviews current and predicted trends.Written by world leading experts in the field.Assesses how AI can be applied in ophthalmic healthcare
圖書(shū)封面Titlebook: Artificial Intelligence in Ophthalmology;  Andrzej Grzybowski Book 2021 Springer Nature Switzerland AG 2021 Automatic software.Deep learnin
影響因子.This book provides a wide-ranging overview of artificial intelligence (AI), machine learning (ML) and deep learning (DL) algorithms in ophthalmology. Expertly written chapters examine AI in age-related macular degeneration, glaucoma, retinopathy of prematurity and diabetic retinopathy screening. AI perspectives, systems and limitations are all carefully assessed throughout the book as well as the technical aspects of DL systems for retinal diseases including the application of Google DeepMind, the Singapore algorithm, and the Johns Hopkins algorithm.. .Artificial Intelligence in Ophthalmology .meets the need for a resource that reviews the benefits and pitfalls of AI, ML and DL in ophthalmology. Ophthalmologists, optometrists, eye-care workers, neurologists, cardiologists, internal medicine specialists, AI engineers and IT specialists with an interest in how AI can help with early diagnosis and monitoring treatment in ophthalmic patients will find this book to be an indispensable guide to an evolving area of healthcare technology..
Pindex Book 2021
The information of publication is updating

書(shū)目名稱(chēng)Artificial Intelligence in Ophthalmology影響因子(影響力)




書(shū)目名稱(chēng)Artificial Intelligence in Ophthalmology影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Artificial Intelligence in Ophthalmology網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Artificial Intelligence in Ophthalmology網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Artificial Intelligence in Ophthalmology被引頻次




書(shū)目名稱(chēng)Artificial Intelligence in Ophthalmology被引頻次學(xué)科排名




書(shū)目名稱(chēng)Artificial Intelligence in Ophthalmology年度引用




書(shū)目名稱(chēng)Artificial Intelligence in Ophthalmology年度引用學(xué)科排名




書(shū)目名稱(chēng)Artificial Intelligence in Ophthalmology讀者反饋




書(shū)目名稱(chēng)Artificial Intelligence in Ophthalmology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:47:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:48:25 | 只看該作者
https://doi.org/10.1007/978-3-642-38944-3l data, a prerequisite to translating the techniques to patient care, is often times lacking or unsuccessful. Despite this, the potential of AI as a diagnostic and screening tool to improve patient care highlights the continued need for experimental approaches to be applied to tasks which have the p
地板
發(fā)表于 2025-3-22 05:10:20 | 只看該作者
Nach dem Crew Resource Managementwith DL models. The ability of extracting meaningful representations from high dimensional and complex multi-modal data enables DL system to achieve high accuracy of glaucoma diagnosis and prognosis and to discover new knowledges to improve our current understanding of glaucoma. Though DL algorithms
5#
發(fā)表于 2025-3-22 09:51:51 | 只看該作者
Nach dem Crew Resource Managementmic risk factors, highlighting the importance of controlling these to prevent visual impairment. Compared to 17 human assessors, SELENA performed with comparable accuracy and spent significantly less time. SELENA also demonstrated the potential of using DL systems in developing countries. In Zambia
6#
發(fā)表于 2025-3-22 14:12:37 | 只看該作者
7#
發(fā)表于 2025-3-22 18:10:12 | 只看該作者
Technical Aspects of Deep Learning in Ophthalmology,nal neural networks replace dense matrix multiplication in neural networks with convolution and pooling operations to resemble the biological process of animal visual cortex. Recurrent operations in recurrent neural networks allow models to store past history. Finally, we provide a brief introductio
8#
發(fā)表于 2025-3-22 22:36:38 | 只看該作者
Experimental Artificial Intelligence Systems in Ophthalmology: An Overview,l data, a prerequisite to translating the techniques to patient care, is often times lacking or unsuccessful. Despite this, the potential of AI as a diagnostic and screening tool to improve patient care highlights the continued need for experimental approaches to be applied to tasks which have the p
9#
發(fā)表于 2025-3-23 01:39:28 | 只看該作者
AI and Glaucoma,with DL models. The ability of extracting meaningful representations from high dimensional and complex multi-modal data enables DL system to achieve high accuracy of glaucoma diagnosis and prognosis and to discover new knowledges to improve our current understanding of glaucoma. Though DL algorithms
10#
發(fā)表于 2025-3-23 06:10:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵宝市| 榆林市| 怀仁县| 昭通市| 吉木萨尔县| 洱源县| 那坡县| 凤山市| 抚远县| 上饶市| 宁河县| 广平县| 巴彦县| 和政县| 桂阳县| 黄骅市| 潮安县| 南投市| 邹城市| 延吉市| 甘洛县| 阿图什市| 柯坪县| 远安县| 绵竹市| 开鲁县| 杭锦后旗| 苗栗市| 万载县| 开化县| 攀枝花市| 唐河县| 双峰县| 稻城县| 岗巴县| 本溪| 游戏| 陵川县| 西丰县| 康平县| 米易县|