找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Scientific Discoveries; Extracting Physical Raban Iten Book 2023 The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
查看: 24599|回復(fù): 54
樓主
發(fā)表于 2025-3-21 16:39:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Intelligence for Scientific Discoveries
期刊簡稱Extracting Physical
影響因子2023Raban Iten
視頻videohttp://file.papertrans.cn/163/162390/162390.mp4
發(fā)行地址Provides an overview for scientists of how machine learning can help to discover physical concepts.Introduces a general framework that can help the reader to extract relevant parameters from experimen
圖書封面Titlebook: Artificial Intelligence for Scientific Discoveries; Extracting Physical  Raban Iten Book 2023 The Editor(s) (if applicable) and The Author(
影響因子. .Will research soon be done by artificial intelligence, thereby making human researchers superfluous? This book explains modern approaches to discovering physical concepts with machine learning and elucidates their strengths and limitations. The?automation?of the creation of experimental setups and physical models, as well as model testing are discussed. The focus of the book is the?automation?of an important step of the model creation, namely finding a minimal number of natural parameters that contain sufficient information to make predictions about the considered system. The basic idea of this approach is to employ a deep learning architecture, SciNet, to model a simplified version of a physicist‘s reasoning process. SciNet finds the relevant physical parameters, like the mass of a particle, from experimental data and makes predictions based on the parameters found. The author demonstrates how to extract conceptual information from such parameters, e.g., Copernicus‘ conclusion that the solar system is heliocentric.?..?.
Pindex Book 2023
The information of publication is updating

書目名稱Artificial Intelligence for Scientific Discoveries影響因子(影響力)




書目名稱Artificial Intelligence for Scientific Discoveries影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence for Scientific Discoveries網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence for Scientific Discoveries網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence for Scientific Discoveries被引頻次




書目名稱Artificial Intelligence for Scientific Discoveries被引頻次學(xué)科排名




書目名稱Artificial Intelligence for Scientific Discoveries年度引用




書目名稱Artificial Intelligence for Scientific Discoveries年度引用學(xué)科排名




書目名稱Artificial Intelligence for Scientific Discoveries讀者反饋




書目名稱Artificial Intelligence for Scientific Discoveries讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:51:51 | 只看該作者
Creating Experimental Setupse the behavior of such systems is often unintuitive. In this chapter, we discuss how a special kind of reinforcement learning, called projective simulation, can help to automate the creation of experimental setups.
地板
發(fā)表于 2025-3-22 06:19:56 | 只看該作者
5#
發(fā)表于 2025-3-22 12:01:29 | 只看該作者
Model Testingsting a model and discovering its limitations is crucial for improving future models and guiding research. However, when there is no alternative model available, how can we determine a model’s limitations from test data alone? This chapter proposes a solution using machine learning to construct a mo
6#
發(fā)表于 2025-3-22 15:30:05 | 只看該作者
7#
發(fā)表于 2025-3-22 19:01:34 | 只看該作者
Future Research Directions and?Further Readingion of searching for strategies to collect relevant observation data. The second discusses possible directions to tackle the challenge of interpreting representations extracted from experimental data in the case where we do not have a hypothesized representation.
8#
發(fā)表于 2025-3-22 23:32:58 | 只看該作者
9#
發(fā)表于 2025-3-23 02:01:36 | 只看該作者
10#
發(fā)表于 2025-3-23 06:58:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 20:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌乐县| 高雄市| 台南市| 怀来县| 五指山市| 辽中县| 西宁市| 柳河县| 洪雅县| 旺苍县| 安徽省| 山丹县| 沂南县| 库尔勒市| 云南省| 苍山县| 桑日县| 商水县| 佳木斯市| 班玛县| 耒阳市| 双江| 江阴市| 丰宁| 潜山县| 尼木县| 宜兴市| 黎川县| 新和县| 全南县| 德钦县| 香港| 长海县| 博白县| 红河县| 鲜城| 新余市| 云安县| 大宁县| 庆安县| 招远市|