找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Cybersecurity; Mark Stamp,Corrado Aaron Visaggio,Fabio Di Troia Book 2022 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
樓主: Hypothesis
21#
發(fā)表于 2025-3-25 05:40:22 | 只看該作者
Mark Stamp,Corrado Aaron Visaggio,Fabio Di TroiaPresents new and novel applications for AI technology within the context of cybersecurity.Explores and conquers issues and obstacles that the AI field is tackling within the context of cybersecurity.T
22#
發(fā)表于 2025-3-25 11:25:43 | 只看該作者
Advances in Information Securityhttp://image.papertrans.cn/b/image/162364.jpg
23#
發(fā)表于 2025-3-25 15:01:09 | 只看該作者
https://doi.org/10.1007/978-1-349-15821-8samples. While the AC-GAN generated images often appear to be very similar to real malware images, we conclude that from a deep learning perspective, the AC-GAN generated samples do not rise to the level of deep fake malware images.
24#
發(fā)表于 2025-3-25 17:43:10 | 只看該作者
https://doi.org/10.1007/978-3-031-40419-1ation algorithms, we used and compared Support Vector Machines (SVM), Logistic Regression, Random Forests, and Multi-Layer Perceptron (MLP). We found that the classification accuracy obtained by the word embeddings generated by BERT is effective in detecting malware samples, and superior in accuracy when compared to the ones created by Word2Vec.
25#
發(fā)表于 2025-3-25 20:17:04 | 只看該作者
26#
發(fā)表于 2025-3-26 01:11:22 | 只看該作者
BERT for Malware Classificationation algorithms, we used and compared Support Vector Machines (SVM), Logistic Regression, Random Forests, and Multi-Layer Perceptron (MLP). We found that the classification accuracy obtained by the word embeddings generated by BERT is effective in detecting malware samples, and superior in accuracy when compared to the ones created by Word2Vec.
27#
發(fā)表于 2025-3-26 08:15:41 | 只看該作者
28#
發(fā)表于 2025-3-26 11:58:56 | 只看該作者
Assessing the Robustness of an Image-Based Malware Classifier with Smali Level Perturbations Techniqtector and evaluate its resilience when morphed samples are considered. The experiments were conducted on 16384 real-world Android Malware, and the experimental analysis demonstrates that standard image-based malware classifiers are vulnerable to simple perturbations attacks.
29#
發(fā)表于 2025-3-26 15:41:13 | 只看該作者
30#
發(fā)表于 2025-3-26 17:53:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 08:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
文昌市| 永宁县| 双桥区| 兴安盟| 会宁县| 株洲县| 宁蒗| 康乐县| 永新县| 旅游| 屏东县| 惠安县| 成武县| 漠河县| 岗巴县| 抚宁县| 和林格尔县| 河间市| 泊头市| 重庆市| 广德县| 梨树县| 文安县| 潞西市| 随州市| 宝清县| 梅河口市| 杨浦区| 胶南市| 富裕县| 桑日县| 西峡县| 翁牛特旗| 甘肃省| 舒城县| 财经| 北票市| 仪陇县| 建德市| 泾川县| 大丰市|