找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing – ICAISC 2006; 8th International Co Leszek Rutkowski,Ryszard Tadeusiewicz,Jacek M. ?ur Conferenc

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:44:10 | 只看該作者
12#
發(fā)表于 2025-3-23 15:07:50 | 只看該作者
13#
發(fā)表于 2025-3-23 20:24:41 | 只看該作者
14#
發(fā)表于 2025-3-24 01:57:05 | 只看該作者
RBF Nets in Faults Localizationwith a metric in the label space. Then, this problem is approximately solved, providing hints on selecting appropriate RBF nets. It was shown that the approximate solution is the exact one in several important cases. Finally, we propose the algorithm for learning the proposed RBF net. The results of
15#
發(fā)表于 2025-3-24 03:27:15 | 只看該作者
A Hypertube as a Possible Interpolation Region of a Neural Models based on the parametric curve modelling. The idea of it is to surround the parametric curve model with the hypertube covering most of the data points used in a neural model training. The practical application of the method will be shown via a system of an unemployment rate in Poland in years 1992-
16#
發(fā)表于 2025-3-24 07:09:43 | 只看該作者
17#
發(fā)表于 2025-3-24 13:58:36 | 只看該作者
Fast Orthogonal Neural Networksof basic operations associated with the algorithm of a given transform is used in order to substantially reduce the number of adapted weights of the network. Two new types of neurons corresponding to orthogonal basic operations are introduced and formulas for architecture-independent error backpropa
18#
發(fā)表于 2025-3-24 15:08:58 | 只看該作者
19#
發(fā)表于 2025-3-24 22:58:22 | 只看該作者
A Fast and Numerically Robust Neural Network Training Algorithm adaptively-adjustable time-varying forgetting factor technique, is presented first. Then a U-D factorization-based RPE (UD-RPE) algorithm is proposed to further improve the training rate and accuracy of the FNNs. In comparison with the backpropagation (BP) and existing RPE based training algorithms
20#
發(fā)表于 2025-3-25 02:52:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 14:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梓潼县| 洛宁县| 黄浦区| 田林县| 永新县| 宁波市| 扎兰屯市| 永清县| 浮梁县| 台北县| 博野县| 博爱县| 灯塔市| 南岸区| 南丰县| 措勤县| 郯城县| 都昌县| 建水县| 封丘县| 哈密市| 奉化市| 宜宾县| 巴彦淖尔市| 山阴县| 凤山县| 涟水县| 九龙县| 滦平县| 尼玛县| 文安县| 凌源市| 集安市| 晋江市| 祥云县| 达孜县| 泌阳县| 胶州市| 甘南县| 龙山县| 工布江达县|