找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing; 20th International C Leszek Rutkowski,Rafa? Scherer,Jacek M. Zurada Conference proceedings 2021

[復(fù)制鏈接]
查看: 21149|回復(fù): 60
樓主
發(fā)表于 2025-3-21 19:39:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Intelligence and Soft Computing
期刊簡(jiǎn)稱20th International C
影響因子2023Leszek Rutkowski,Rafa? Scherer,Jacek M. Zurada
視頻videohttp://file.papertrans.cn/163/162313/162313.mp4
學(xué)科分類(lèi)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Artificial Intelligence and Soft Computing; 20th International C Leszek Rutkowski,Rafa? Scherer,Jacek M. Zurada Conference proceedings 2021
影響因子The two-volume set LNAI 12854 and 12855 constitutes the refereed proceedings of the 20th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2021, held in Zakopane, Poland, in June 2021. Due to COVID 19, the conference was held virtually..The 89 full papers presented were carefully reviewed and selected from 195 submissions. The papers included both traditional artificial intelligence methods and soft computing techniques as well as follows: .·??????? Neural Networks and Their Applications..?.·??????? Fuzzy Systems and Their Applications ..?.·??????? Evolutionary Algorithms and Their Applications..?.·??????? Artificial Intelligence in Modeling and Simulation..?.·??????? Computer Vision, Image and Speech Analysis..·??????? Data Mining..?..·??????? Various Problems of Artificial Intelligence..·??????? Bioinformatics, Biometrics and Medical Applications.
Pindex Conference proceedings 2021
The information of publication is updating

書(shū)目名稱Artificial Intelligence and Soft Computing影響因子(影響力)




書(shū)目名稱Artificial Intelligence and Soft Computing影響因子(影響力)學(xué)科排名




書(shū)目名稱Artificial Intelligence and Soft Computing網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Artificial Intelligence and Soft Computing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Artificial Intelligence and Soft Computing被引頻次




書(shū)目名稱Artificial Intelligence and Soft Computing被引頻次學(xué)科排名




書(shū)目名稱Artificial Intelligence and Soft Computing年度引用




書(shū)目名稱Artificial Intelligence and Soft Computing年度引用學(xué)科排名




書(shū)目名稱Artificial Intelligence and Soft Computing讀者反饋




書(shū)目名稱Artificial Intelligence and Soft Computing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:23:07 | 只看該作者
Modification of Learning Feedforward Neural Networks with the BP Methodethod converges relatively slowly. In this paper a new approach to the backpropagation algorithm is presented. The proposed solution speeds up the BP method by using vector calculations. This modification of the BP algorithm was tested on a few standard examples. The obtained performance of both methods was compared.
板凳
發(fā)表于 2025-3-22 01:44:09 | 只看該作者
https://doi.org/10.1007/978-3-030-87986-0artificial intelligence; classification; computer networks; computer science; computer systems; computer
地板
發(fā)表于 2025-3-22 06:06:14 | 只看該作者
5#
發(fā)表于 2025-3-22 09:18:38 | 只看該作者
6#
發(fā)表于 2025-3-22 16:34:13 | 只看該作者
7#
發(fā)表于 2025-3-22 19:26:24 | 只看該作者
Durchleuchtung und Subtraktionsangiographieethod converges relatively slowly. In this paper a new approach to the backpropagation algorithm is presented. The proposed solution speeds up the BP method by using vector calculations. This modification of the BP algorithm was tested on a few standard examples. The obtained performance of both methods was compared.
8#
發(fā)表于 2025-3-22 23:13:53 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/b/image/162313.jpg
9#
發(fā)表于 2025-3-23 04:51:06 | 只看該作者
Empirische und theoretische Ausgangspunkte,a (e.g.: investors required return, risk tolerance, goals, and time frame). The objective of this research is to present a two phase deep learning module to csonstruct a financial stocks portfolio that can be used repeatedly to select the most promising stocks and adjust stocks allocations (namely q
10#
發(fā)表于 2025-3-23 06:14:07 | 只看該作者
Methodologie und Design des Gesamtprojekts,ology of the Factor Augmented Artificial Neural Network Model is applied to improve the predictive capacity of liquidity models compared to traditional econometric methodologies. This hybrid methodology based on dynamic factor models and neural networks is compared with Deep Learning methodologies s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河北区| 萍乡市| 庄河市| 宁波市| 扬中市| 顺义区| 万源市| 木兰县| 准格尔旗| 康平县| 靖边县| 双柏县| 金溪县| 建平县| 屯昌县| 尼勒克县| 义马市| 麦盖提县| 灵川县| 同心县| 婺源县| 水城县| 古交市| 合肥市| 连山| 灵武市| 汶川县| 平陆县| 东乡县| 边坝县| 宿州市| 政和县| 平度市| 延川县| 大港区| 定州市| 鲁甸县| 曲麻莱县| 浮山县| 静海县| 盐山县|