找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing; 20th International C Leszek Rutkowski,Rafa? Scherer,Jacek M. Zurada Conference proceedings 2021

[復(fù)制鏈接]
樓主: INFER
51#
發(fā)表于 2025-3-30 12:06:31 | 只看該作者
Karlheinz Lohs,Peter Elstner,Ursula Stephanent of skin lesions asymmetry, along with various variations of the PH2 database. For the best CNN network, we achieved the following results: true positive rate for the asymmetry 92.31%, weighted accuracy 67.41%, F1 score 0.646 and Matthews correlation coefficient 0.533.
52#
發(fā)表于 2025-3-30 16:13:22 | 只看該作者
53#
發(fā)表于 2025-3-30 19:03:32 | 只看該作者
https://doi.org/10.1007/b138937 the corpus and attack the most important words in each sentence. The rating is global to the whole corpus and not to each specific data point. This method performs equal or better when compared to previous attack methods, and its running time is around 39 times faster than previous models.
54#
發(fā)表于 2025-3-30 21:00:59 | 只看該作者
55#
發(fā)表于 2025-3-31 02:48:59 | 只看該作者
Karlheinz Lohs,Peter Elstner,Ursula Stephaneled training images, minimizing the specialist’s annotation effort. The validation of our proposed methodology is done on a public breast lesion-related dataset and our results show considerable accuracy gains over the traditional supervised learning approach and reductions of up?to . in the labeled training sets.
56#
發(fā)表于 2025-3-31 05:15:01 | 只看該作者
57#
發(fā)表于 2025-3-31 09:58:10 | 只看該作者
58#
發(fā)表于 2025-3-31 14:48:11 | 只看該作者
A Computer Vision Based Approach forDriver Distraction Recognition Using Deep Learning and Genetic A technique achieves an accuracy of 96.37%, surpassing the previously obtained 95.98%, and on the State Farm Driver Distraction Dataset, on which we attain an accuracy of 99.75%. The 6-Model Ensemble gave an inference time of 0.024?s as measured on our machine with Ubuntu 20.04(64-bit) and GPU as GeForce GTX 1080.
59#
發(fā)表于 2025-3-31 21:03:29 | 只看該作者
60#
發(fā)表于 2025-4-1 00:12:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 07:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉木萨尔县| 宁波市| 肃宁县| 望奎县| 旌德县| 新余市| 石台县| 松潘县| 福海县| 镇江市| 克东县| 梅河口市| 丰县| 乳源| 金塔县| 大埔县| 南涧| 荃湾区| 贵阳市| 罗定市| 五大连池市| 宜兴市| 滁州市| 闻喜县| 全州县| 江都市| 浠水县| 西青区| 应城市| 大安市| 高阳县| 谷城县| 丹巴县| 广河县| 宜春市| 孝感市| 广汉市| 方山县| 五原县| 五寨县| 寿阳县|