找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing; 15th International C Leszek Rutkowski,Marcin Korytkowski,Jacek M. Zurad Conference proceedings

[復(fù)制鏈接]
樓主: 不服從
41#
發(fā)表于 2025-3-28 14:40:38 | 只看該作者
Paramilitaries, Republicans and Loyalistsd on a new idea of learning neural networks without error backpropagation. The proposed solution is based on completely new parallel structures to effectively reduce high computational load of this algorithm. Detailed parallel 2D and 3D neural network learning structures are explicitely discussed.
42#
發(fā)表于 2025-3-28 22:17:33 | 只看該作者
43#
發(fā)表于 2025-3-29 00:05:23 | 只看該作者
Leszek Rutkowski,Marcin Korytkowski,Jacek M. ZuradIncludes supplementary material:
44#
發(fā)表于 2025-3-29 05:46:19 | 只看該作者
45#
發(fā)表于 2025-3-29 11:02:53 | 只看該作者
46#
發(fā)表于 2025-3-29 14:47:58 | 只看該作者
978-3-319-39377-3Springer International Publishing Switzerland 2016
47#
發(fā)表于 2025-3-29 17:48:06 | 只看該作者
Criminal Justice and Emergency Lawsle for solving of a specific task. The ensemble is able to change its structure by choosing the electors with respect to their training performance. The proposed method is tested in practical regression tasks in civil engineering structures monitoring.
48#
發(fā)表于 2025-3-29 20:05:39 | 只看該作者
49#
發(fā)表于 2025-3-30 02:57:33 | 只看該作者
https://doi.org/10.1007/978-3-531-91703-0inuous space. The proposed algorithm is experimented on some practical regression problems and compared with other constructive algorithms. Results show that proposed OLS-PSO algorithm could achieve a compact SLFN with good generalization ability.
50#
發(fā)表于 2025-3-30 06:56:34 | 只看該作者
Ensemble ANN Classifier for Structural Health Monitoringle for solving of a specific task. The ensemble is able to change its structure by choosing the electors with respect to their training performance. The proposed method is tested in practical regression tasks in civil engineering structures monitoring.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 22:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双鸭山市| 中西区| 上饶县| 林甸县| 尉犁县| 新蔡县| 开鲁县| 垦利县| 九台市| 绥德县| 巍山| 石楼县| 岳阳县| 南雄市| 通州市| 岑巩县| 阿鲁科尔沁旗| 凌云县| 新昌县| 达孜县| 城口县| 增城市| 泗水县| 颍上县| 婺源县| 休宁县| 五常市| 宝清县| 栾城县| 辽源市| 平顺县| 温泉县| 龙陵县| 海阳市| 辉县市| 科技| 五峰| 湘潭市| 唐河县| 深泽县| 鄯善县|