找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing; 15th International C Leszek Rutkowski,Marcin Korytkowski,Jacek M. Zurad Conference proceedings

[復(fù)制鏈接]
樓主: 不服從
41#
發(fā)表于 2025-3-28 14:40:38 | 只看該作者
Paramilitaries, Republicans and Loyalistsd on a new idea of learning neural networks without error backpropagation. The proposed solution is based on completely new parallel structures to effectively reduce high computational load of this algorithm. Detailed parallel 2D and 3D neural network learning structures are explicitely discussed.
42#
發(fā)表于 2025-3-28 22:17:33 | 只看該作者
43#
發(fā)表于 2025-3-29 00:05:23 | 只看該作者
Leszek Rutkowski,Marcin Korytkowski,Jacek M. ZuradIncludes supplementary material:
44#
發(fā)表于 2025-3-29 05:46:19 | 只看該作者
45#
發(fā)表于 2025-3-29 11:02:53 | 只看該作者
46#
發(fā)表于 2025-3-29 14:47:58 | 只看該作者
978-3-319-39377-3Springer International Publishing Switzerland 2016
47#
發(fā)表于 2025-3-29 17:48:06 | 只看該作者
Criminal Justice and Emergency Lawsle for solving of a specific task. The ensemble is able to change its structure by choosing the electors with respect to their training performance. The proposed method is tested in practical regression tasks in civil engineering structures monitoring.
48#
發(fā)表于 2025-3-29 20:05:39 | 只看該作者
49#
發(fā)表于 2025-3-30 02:57:33 | 只看該作者
https://doi.org/10.1007/978-3-531-91703-0inuous space. The proposed algorithm is experimented on some practical regression problems and compared with other constructive algorithms. Results show that proposed OLS-PSO algorithm could achieve a compact SLFN with good generalization ability.
50#
發(fā)表于 2025-3-30 06:56:34 | 只看該作者
Ensemble ANN Classifier for Structural Health Monitoringle for solving of a specific task. The ensemble is able to change its structure by choosing the electors with respect to their training performance. The proposed method is tested in practical regression tasks in civil engineering structures monitoring.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 02:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克陶县| 梁平县| 丽江市| 镇雄县| 白朗县| 都兰县| 离岛区| 池州市| 扎兰屯市| 师宗县| 贞丰县| 金坛市| 集安市| 广平县| 且末县| 高雄县| 延边| 肇州县| 宝应县| 静海县| 祁阳县| 通城县| 武强县| 凤山县| 鱼台县| 康保县| 洛阳市| 宜君县| 金秀| 尚志市| 中牟县| 邮箱| 德清县| 琼海市| 固阳县| 嘉善县| 鄢陵县| 永兴县| 简阳市| 延庆县| 翁牛特旗|