找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Natural Language; 6th Conference, AINL Andrey Filchenkov,Lidia Pivovarova,Jan ?i?ka Conference proceedings 2018

[復(fù)制鏈接]
樓主: 巡洋
21#
發(fā)表于 2025-3-25 05:56:04 | 只看該作者
22#
發(fā)表于 2025-3-25 10:40:14 | 只看該作者
Andrey Filchenkov,Lidia Pivovarova,Jan ?i?kaIncludes supplementary material:
23#
發(fā)表于 2025-3-25 14:07:51 | 只看該作者
Communications in Computer and Information Sciencehttp://image.papertrans.cn/b/image/162256.jpg
24#
發(fā)表于 2025-3-25 17:14:18 | 只看該作者
25#
發(fā)表于 2025-3-25 21:59:03 | 只看該作者
978-3-319-71745-6Springer International Publishing AG 2018
26#
發(fā)表于 2025-3-26 01:40:13 | 只看該作者
Semantic Feature Aggregation for Gender Identification in Russian Facebook Russian. We collect Facebook posts of Russian-speaking users and apply them as a dataset for two topic modelling techniques and a distributional clustering approach. The output of the algorithms is applied as a feature aggregation method in a task of gender classification based on a smaller Faceboo
27#
發(fā)表于 2025-3-26 07:06:34 | 只看該作者
Using Linguistic Activity in Social Networks to Predict and Interpret Dark Psychological Traitsanging from psychology to marketing, but there are very few works of this kind on Russian-speaking samples. We use Latent Dirichlet Allocation on the Facebook status updates to extract interpretable features that we then use to identify Facebook users with certain negative psychological traits (the
28#
發(fā)表于 2025-3-26 12:13:06 | 只看該作者
29#
發(fā)表于 2025-3-26 14:53:53 | 只看該作者
Deep Learning for Acoustic Addressee Detection in Spoken Dialogue Systemsspeech addressed to real humans. In this work, several modalities were analyzed, and acoustic data has been chosen as the main modality by reason of the most flexible usability in modern SDSs. To resolve the problem of addressee detection, deep learning methods such as fully-connected neural network
30#
發(fā)表于 2025-3-26 17:36:53 | 只看該作者
Deep Neural Networks in Russian Speech Recognitionts. We propose applying various DNNs in automatic recognition of Russian continuous speech. We used different neural network models such as Convolutional Neural Networks (CNNs), modifications of Long short-term memory?(LSTM), Residual Networks and Recurrent Convolutional Networks (RCNNs). The presen
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兰溪市| 修水县| 济宁市| 疏附县| 调兵山市| 沅陵县| 南溪县| 如皋市| 竹北市| 武胜县| 额济纳旗| 六盘水市| 通榆县| 衡南县| 平泉县| 凉城县| 肥乡县| 十堰市| 安徽省| 陇西县| 墨竹工卡县| 南木林县| 厦门市| 楚雄市| 安义县| 阿克陶县| 安阳市| 天峻县| 铁力市| 宁都县| 望谟县| 邯郸市| 光泽县| 潜江市| 合川市| 琼中| 吉木乃县| 长丰县| 徐州市| 瑞昌市| 涡阳县|