找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Around and Beyond the Square of Opposition; Jean-Yves Béziau,Dale Jacquette Book 2012 Springer Basel 2012 intuitionistic logic.knowledge.l

[復制鏈接]
樓主: 祈求
31#
發(fā)表于 2025-3-26 23:24:31 | 只看該作者
32#
發(fā)表于 2025-3-27 01:14:34 | 只看該作者
33#
發(fā)表于 2025-3-27 08:55:56 | 只看該作者
34#
發(fā)表于 2025-3-27 13:17:18 | 只看該作者
35#
發(fā)表于 2025-3-27 14:41:00 | 只看該作者
36#
發(fā)表于 2025-3-27 20:23:00 | 只看該作者
No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Casesttempt to apply the square of opposition to linear logic shows that the lack of subcontrariety and the asymmetry of contradiction are not equivalent properties. The former property, not the latter, is the general reason why there can be no group of opposition for constructive logics.
37#
發(fā)表于 2025-3-28 00:39:02 | 只看該作者
Jean-Yves Béziau,Dale JacquetteExclusively dedicated to the square of oppositions.Presenting the topic from an interdisciplinary perspective.Of interest for mathematical logicians as well as philosophers.Includes supplementary mate
38#
發(fā)表于 2025-3-28 05:58:44 | 只看該作者
39#
發(fā)表于 2025-3-28 09:01:07 | 只看該作者
Logical Oppositions in Arabic Logic: Avicenna and Averroesess, we can find that Averroes defends what Parsons calls SQUARE and [SQUARE], because he holds . and .-conversions and the truth conditions he admits are just those that make all the relations of the square valid, while Avicenna defends SQUARE and [SQUARE] only for the wa?fī reading of assertoric p
40#
發(fā)表于 2025-3-28 13:13:39 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 02:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
静宁县| 奎屯市| 寿宁县| 固安县| 射阳县| 呈贡县| 玛曲县| 波密县| 阳春市| 游戏| 图木舒克市| 武功县| 嘉兴市| 酉阳| 汝阳县| 逊克县| 天峻县| 汶川县| 京山县| 军事| 新乡县| 张北县| 蒙山县| 齐齐哈尔市| 三台县| 隆尧县| 汉川市| 昌图县| 楚雄市| 怀来县| 交口县| 广水市| 保康县| 麻阳| 朔州市| 曲阳县| 板桥市| 盐城市| 桦川县| 高青县| 泸州市|