找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic on Modular Curves; Glenn Stevens Book 1982 Birkh?user Boston 1982 algebra.arithmetic.function.number theory.proof

[復(fù)制鏈接]
查看: 27349|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:53:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Arithmetic on Modular Curves
影響因子2023Glenn Stevens
視頻videohttp://file.papertrans.cn/162/161625/161625.mp4
學(xué)科分類Progress in Mathematics
圖書封面Titlebook: Arithmetic on Modular Curves;  Glenn Stevens Book 1982 Birkh?user Boston 1982 algebra.arithmetic.function.number theory.proof
影響因子One of the most intriguing problems of modern number theory is to relate the arithmetic of abelian varieties to the special values of associated L-functions. A very precise conjecture has been formulated for elliptic curves by Birc~ and Swinnerton-Dyer and generalized to abelian varieties by Tate. The numerical evidence is quite encouraging. A weakened form of the conjectures has been verified for CM elliptic curves by Coates and Wiles, and recently strengthened by K. Rubin. But a general proof of the conjectures seems still to be a long way off. A few years ago, B. Mazur [26] proved a weak analog of these c- jectures. Let N be prime, and be a weight two newform for r 0 (N) . For a primitive Dirichlet character X of conductor prime to N, let i f (X) denote the algebraic part of L (f , X, 1) (see below). Mazur showed in [ 26] that the residue class of Af (X) modulo the "Eisenstein" ideal gives information about the arithmetic of Xo (N). There are two aspects to his work: congruence formulae for the values Af(X) , and a descent argument. Mazur‘s congruence formulae were extended to r 1 (N), N prime, by S. Kamienny and the author [17], and in a paper which will appear shortly, Kamienn
Pindex Book 1982
The information of publication is updating

書目名稱Arithmetic on Modular Curves影響因子(影響力)




書目名稱Arithmetic on Modular Curves影響因子(影響力)學(xué)科排名




書目名稱Arithmetic on Modular Curves網(wǎng)絡(luò)公開度




書目名稱Arithmetic on Modular Curves網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Arithmetic on Modular Curves被引頻次




書目名稱Arithmetic on Modular Curves被引頻次學(xué)科排名




書目名稱Arithmetic on Modular Curves年度引用




書目名稱Arithmetic on Modular Curves年度引用學(xué)科排名




書目名稱Arithmetic on Modular Curves讀者反饋




書目名稱Arithmetic on Modular Curves讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:13:04 | 只看該作者
Arithmetic on Modular Curves978-1-4684-9165-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
板凳
發(fā)表于 2025-3-22 04:21:48 | 只看該作者
地板
發(fā)表于 2025-3-22 05:11:16 | 只看該作者
https://doi.org/10.1007/978-1-4842-3742-7aic part of the values L(f, χ, 1) where f is a parabolic eigenform. We do this modulo certain Eisenstein primes P ? O(f) associated to a pair E, f of eigenfunctions E ∈ E
5#
發(fā)表于 2025-3-22 09:42:18 | 只看該作者
6#
發(fā)表于 2025-3-22 16:24:55 | 只看該作者
Tables of Special Values,racter of conductor m.. In the first two sets of tables m. is taken to be positive or negative depending on whether χ(?1) = sgn χ is plus or minus one. The modular form f ranges through the weight two parabolic eigenforms for the following modular curves:.The complex number . is an appropriate period of f(z)dz on the corresponding modular curves.
7#
發(fā)表于 2025-3-22 20:46:52 | 只看該作者
8#
發(fā)表于 2025-3-22 21:56:30 | 只看該作者
978-0-8176-3088-1Birkh?user Boston 1982
9#
發(fā)表于 2025-3-23 01:59:20 | 只看該作者
Summarizing with Window Aggregates,We begin with a tour of the basic concepts which we will study in more detail in the following chapters. For our purposes the most important of these are the universal special value and the cuspidal group.
10#
發(fā)表于 2025-3-23 08:39:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盖州市| 梅河口市| 阿拉善左旗| 建水县| 大悟县| 丹棱县| 石景山区| 呼伦贝尔市| 永登县| 合阳县| 叙永县| 普陀区| 内丘县| 广安市| 姜堰市| 清涧县| 青浦区| 宝坻区| 北海市| 承德市| 昭通市| 东至县| 邻水| 乌鲁木齐县| 鄂伦春自治旗| 明星| 沭阳县| 临潭县| 应城市| 孟村| 仙居县| 武宣县| 洪洞县| 高要市| 恩平市| 泸水县| 阜阳市| 高要市| 余江县| 大关县| 保康县|