找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry; Papers Dedicated to Michael Artin,John Tate Book 1983 Springer Science+Business Media New York 1983 Multiplicatio

[復(fù)制鏈接]
樓主: 巡洋
41#
發(fā)表于 2025-3-28 18:35:26 | 只看該作者
p-adic Etale Cohomology,fact, recently Ogus has used these results to apply the basic Rudakov-Shafarevich result on existence and smoothness of moduli for K3 surfaces in characteristic . to the study of the moduli space when . = 2.
42#
發(fā)表于 2025-3-28 19:52:04 | 只看該作者
43#
發(fā)表于 2025-3-29 02:49:23 | 只看該作者
44#
發(fā)表于 2025-3-29 07:04:37 | 只看該作者
45#
發(fā)表于 2025-3-29 08:56:21 | 只看該作者
46#
發(fā)表于 2025-3-29 13:10:11 | 只看該作者
Linear Elastic Fracture Mechanics,al points of infinite order on an elliptic curve defined over a number field and the behaviour of its Hasse-Weil .-Series at the point . = 1 in the complex plane, as is predicted by the conjecture of Birch and Swinnerton-Dyer. Guided by Artin and Tate’s [15] success with the geometric analogue, most
47#
發(fā)表于 2025-3-29 18:03:17 | 只看該作者
48#
發(fā)表于 2025-3-29 23:24:58 | 只看該作者
p-adic Etale Cohomology,lling physical reasons (viz. time, space, and distance) however, I will give here only statements of results; and my coauthors have not had the opportunity to correct any stupidities which may have slipped in. The conjectures in §3 are my own. I like to think that this research has been strongly inf
49#
發(fā)表于 2025-3-30 00:32:32 | 只看該作者
50#
發(fā)表于 2025-3-30 06:34:41 | 只看該作者
Number Theoretic Applications of Polynomials with Rational Coefficients Defined by Extremality Condlysis. Among these classes we find orthogonal polynomials (especially classical orthogonal polynomials expressed as hypergeometric polynomials) and polynomials least deviating from zero on a given continuum (Chebicheff polynomials). Orthogonal polynomials of the first and second kind appear as denom
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雅安市| 南昌县| 桃江县| 丰县| 开平市| 五家渠市| 泰州市| 吉木萨尔县| 云霄县| 滦平县| 洛宁县| 宁安市| 天全县| 房山区| 宜川县| 云浮市| 巴林左旗| 祁连县| 海丰县| 龙胜| 海阳市| 隆子县| 沾化县| 微博| 武夷山市| 得荣县| 苍南县| 仙居县| 甘肃省| 辽宁省| 大邑县| 保亭| 班玛县| 福州市| 丹寨县| 娄烦县| 金山区| 定兴县| 桦南县| 涞水县| 宜兰市|