找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry, Number Theory, and Computation; Jennifer S. Balakrishnan,Noam Elkies,John Voight Conference proceedings 2021 The Edit

[復(fù)制鏈接]
樓主: Nutraceutical
31#
發(fā)表于 2025-3-26 22:01:35 | 只看該作者
Computing Rational Points on Rank 0 Genus 3 Hyperelliptic Curves, Chabauty–Coleman method to find the zero set of a certain system of .-adic integrals, which is known to be finite and include the set of rational points .. We implemented an algorithm in Sage to carry out the Chabauty–Coleman method on a database of 5870 curves.
32#
發(fā)表于 2025-3-27 03:12:04 | 只看該作者
Curves with Sharp Chabauty-Coleman Bound,al points if the rank condition is satisfied. We give numerous examples of genus two and rank one curves for which Coleman’s bound is sharp. Based on one of those curves, we construct an example of a curve of genus five whose rational points are determined using the descent method together with Cole
33#
發(fā)表于 2025-3-27 05:26:09 | 只看該作者
34#
發(fā)表于 2025-3-27 11:57:29 | 只看該作者
Linear Dependence Among Hecke Eigenvalues,n cuspidal eigenform. Our motivation lies in its algorithmic application. For any fixed positive integer ., the bound established here yields an algorithm that computes cuspidal Hecke eigenforms with a given weight . whose Hecke eigenvalues generate a number field of degree .. The resulting algorith
35#
發(fā)表于 2025-3-27 17:20:18 | 只看該作者
36#
發(fā)表于 2025-3-27 20:52:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:02:40 | 只看該作者
38#
發(fā)表于 2025-3-28 06:02:07 | 只看該作者
39#
發(fā)表于 2025-3-28 10:06:37 | 只看該作者
Curves with Sharp Chabauty-Coleman Bound,al points if the rank condition is satisfied. We give numerous examples of genus two and rank one curves for which Coleman’s bound is sharp. Based on one of those curves, we construct an example of a curve of genus five whose rational points are determined using the descent method together with Coleman’s theorem.
40#
發(fā)表于 2025-3-28 10:28:44 | 只看該作者
Linear Dependence Among Hecke Eigenvalues,n cuspidal eigenform. Our motivation lies in its algorithmic application. For any fixed positive integer ., the bound established here yields an algorithm that computes cuspidal Hecke eigenforms with a given weight . whose Hecke eigenvalues generate a number field of degree .. The resulting algorithm reduces to Cremona’s when .?=?1 and .?=?2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉安市| 孝昌县| 江北区| 尼玛县| 公安县| 元江| 鞍山市| 莲花县| 大安市| 临夏县| 新化县| 滦南县| 汶川县| 昌吉市| 渑池县| 横山县| 顺平县| 云梦县| 武隆县| 奎屯市| 双江| 白沙| 伊春市| 宣威市| 桃园县| 威海市| 贞丰县| 商水县| 蒙自县| 滦平县| 阜阳市| 牟定县| 定边县| 武功县| 吉木萨尔县| 呼和浩特市| 额尔古纳市| 大关县| 蓝田县| 合川市| 开江县|