找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry; Gary Cornell,Joseph H. Silverman Book 1986 Springer-Verlag New York Inc. 1986 Abelian variety.Blowing up.Compactifica

[復(fù)制鏈接]
樓主: HEIR
21#
發(fā)表于 2025-3-25 07:17:42 | 只看該作者
22#
發(fā)表于 2025-3-25 09:52:12 | 只看該作者
23#
發(fā)表于 2025-3-25 13:06:13 | 只看該作者
Minimal Models for Curves over Dedekind Rings,rings. We have clpsely followed Lichtenbaum [8]; some proofs have been skipped or summarized so as to go into more detail concerning other parts of the construction. Since the main arguments of [8] apply over Dedekind rings, we work always over Dedekind rings rather than discrete valuation rings.
24#
發(fā)表于 2025-3-25 16:14:01 | 只看該作者
25#
發(fā)表于 2025-3-25 21:28:38 | 只看該作者
A Higher Dimensional Mordell Conjecture,ral or rational points. Indeed, if a complete curve has genus g . 2, then it has finitely many rational points; any affine curve whose projective closure is a curve of genus at least two will, ., have only finitely many integral points. A curve of genus 1 is an elliptic curve; it will have infinitel
26#
發(fā)表于 2025-3-26 00:54:34 | 只看該作者
27#
發(fā)表于 2025-3-26 07:51:13 | 只看該作者
28#
發(fā)表于 2025-3-26 11:08:27 | 只看該作者
https://doi.org/10.1007/978-1-4302-0073-4ordell. They are not meant to be a complete historical treatment, and they present only the author’s very personal opinion of how things evolved, and who contributed important ideas. He therefore apologizes in advance for the inaccuracies in them, and that he has omitted many who have contributed th
29#
發(fā)表于 2025-3-26 14:15:52 | 只看該作者
30#
發(fā)表于 2025-3-26 17:38:36 | 只看該作者
Overview of .NET Application Architecturect. In the first section we prove some basic results on complex tori. The second section is devoted to a discussion of isogenics. The third section (the longest) describes the necessary and sufficient conditions that a complex torus must satisfy in order to be isomorphic to an abelian variety. In th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 19:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
全南县| 双城市| 临汾市| 泾川县| 库车县| 丰都县| 博客| 普格县| 汶川县| 东山县| 永济市| 大荔县| 广州市| 安溪县| 桑植县| 滁州市| 桐梓县| 晋中市| 江北区| 侯马市| 永兴县| 金山区| 江安县| 旌德县| 贞丰县| 南投市| 武陟县| 万全县| 余姚市| 湛江市| 盘锦市| 莆田市| 信宜市| 昂仁县| 丰县| 余姚市| 大洼县| 凤城市| 英山县| 和静县| 敦化市|