找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry; Gary Cornell,Joseph H. Silverman Book 1986 Springer-Verlag New York Inc. 1986 Abelian variety.Blowing up.Compactifica

[復(fù)制鏈接]
樓主: HEIR
11#
發(fā)表于 2025-3-23 13:38:01 | 只看該作者
12#
發(fā)表于 2025-3-23 14:22:58 | 只看該作者
Overview of .NET Application Architectureof references at the end of this chapter). For the algebraic-geometric study of abelian varieties over arbitrary fields, the reader is referred to [M-AV] and to the articles of J. S. Milne in this volume.
13#
發(fā)表于 2025-3-23 21:23:35 | 只看該作者
14#
發(fā)表于 2025-3-24 02:08:05 | 只看該作者
Some Historical Notes,ly makes it much easier to state them than it was at the time when they were first used. Of course, this does not mean that we intend to critize those who invented them, which had to state them at a time when the technical means available were much weaker than those we have today.
15#
發(fā)表于 2025-3-24 05:15:42 | 只看該作者
,Abelian Varieties over ?,of references at the end of this chapter). For the algebraic-geometric study of abelian varieties over arbitrary fields, the reader is referred to [M-AV] and to the articles of J. S. Milne in this volume.
16#
發(fā)表于 2025-3-24 08:18:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:29:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:50:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:27:22 | 只看該作者
,Abelian Varieties over ?,ct. In the first section we prove some basic results on complex tori. The second section is devoted to a discussion of isogenics. The third section (the longest) describes the necessary and sufficient conditions that a complex torus must satisfy in order to be isomorphic to an abelian variety. In th
20#
發(fā)表于 2025-3-25 02:45:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙海市| 来宾市| 柳林县| 兰州市| 营山县| 华宁县| 康定县| 和平区| 黑龙江省| 仙居县| 临西县| 剑川县| 英德市| 瑞安市| 温泉县| 宁乡县| 阿荣旗| 博罗县| 长兴县| 六安市| 武功县| 尤溪县| 泊头市| 横峰县| 镇原县| 颍上县| 南投县| 海宁市| 株洲市| 高要市| 孝义市| 桐乡市| 电白县| 石首市| 湟中县| 轮台县| 霍邱县| 通州市| 邹平县| 大足县| 玛多县|