找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation, Complex Analysis, and Potential Theory; N. Arakelian,P. M. Gauthier,G. Sabidussi Book 2001 Springer Science+Business Media

[復(fù)制鏈接]
樓主: 欺侮
31#
發(fā)表于 2025-3-26 22:08:09 | 只看該作者
32#
發(fā)表于 2025-3-27 03:43:53 | 只看該作者
https://doi.org/10.1007/BFb0111932y harmonic functions on a fixed open superset. Finally, we return to applications, and explain how some problems concerning the boundary behaviour of harmonic functions have recently been solved using harmonic approximation.
33#
發(fā)表于 2025-3-27 08:33:15 | 只看該作者
Harmonic approximation and its applications,y harmonic functions on a fixed open superset. Finally, we return to applications, and explain how some problems concerning the boundary behaviour of harmonic functions have recently been solved using harmonic approximation.
34#
發(fā)表于 2025-3-27 11:50:17 | 只看該作者
https://doi.org/10.1007/BFb0111694given sequence of complex numbers as its (multiplicity) index values..To examine the second problem, we present a new, purely analytic approach. Finally, we suggest an analytic method of construction of entire functions of finite order with joint deficient functions and index values.
35#
發(fā)表于 2025-3-27 17:39:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:36:56 | 只看該作者
37#
發(fā)表于 2025-3-27 22:03:55 | 只看該作者
38#
發(fā)表于 2025-3-28 05:44:31 | 只看該作者
Springer Tracts in Modern Physics 12h uniform and tangential approximation are treated. We also give some applications of the theory to the construction of harmonic functions exhibiting various kinds of unexpected behaviour. The course is partly intended to provide preparatory material for S. J. Gardiner’ course “Harmonic approximation and applications”, published in this volume.
39#
發(fā)表于 2025-3-28 10:14:01 | 只看該作者
40#
發(fā)表于 2025-3-28 11:22:13 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通州市| 天等县| 抚顺县| 尼玛县| 宁陵县| 台中县| 庐江县| 香格里拉县| 天津市| 乌鲁木齐市| 伊吾县| 乐昌市| 禹城市| 吉林市| 平山县| 老河口市| 黄冈市| 招远市| 时尚| 田林县| 洪泽县| 陆丰市| 苏尼特左旗| 吴川市| 大石桥市| 吴旗县| 桂东县| 阿克陶县| 湖南省| 炎陵县| 三门峡市| 清水河县| 皮山县| 南郑县| 容城县| 姜堰市| 东明县| 靖边县| 三都| 伊通| 平乡县|