找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation, Complex Analysis, and Potential Theory; N. Arakelian,P. M. Gauthier,G. Sabidussi Book 2001 Springer Science+Business Media

[復(fù)制鏈接]
樓主: 欺侮
31#
發(fā)表于 2025-3-26 22:08:09 | 只看該作者
32#
發(fā)表于 2025-3-27 03:43:53 | 只看該作者
https://doi.org/10.1007/BFb0111932y harmonic functions on a fixed open superset. Finally, we return to applications, and explain how some problems concerning the boundary behaviour of harmonic functions have recently been solved using harmonic approximation.
33#
發(fā)表于 2025-3-27 08:33:15 | 只看該作者
Harmonic approximation and its applications,y harmonic functions on a fixed open superset. Finally, we return to applications, and explain how some problems concerning the boundary behaviour of harmonic functions have recently been solved using harmonic approximation.
34#
發(fā)表于 2025-3-27 11:50:17 | 只看該作者
https://doi.org/10.1007/BFb0111694given sequence of complex numbers as its (multiplicity) index values..To examine the second problem, we present a new, purely analytic approach. Finally, we suggest an analytic method of construction of entire functions of finite order with joint deficient functions and index values.
35#
發(fā)表于 2025-3-27 17:39:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:36:56 | 只看該作者
37#
發(fā)表于 2025-3-27 22:03:55 | 只看該作者
38#
發(fā)表于 2025-3-28 05:44:31 | 只看該作者
Springer Tracts in Modern Physics 12h uniform and tangential approximation are treated. We also give some applications of the theory to the construction of harmonic functions exhibiting various kinds of unexpected behaviour. The course is partly intended to provide preparatory material for S. J. Gardiner’ course “Harmonic approximation and applications”, published in this volume.
39#
發(fā)表于 2025-3-28 10:14:01 | 只看該作者
40#
發(fā)表于 2025-3-28 11:22:13 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 13:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定西市| 尚义县| 南部县| 易门县| 荆州市| 祁阳县| 青田县| 治县。| 黎川县| 广水市| 枣强县| 中江县| 岚皋县| 广宗县| 罗平县| 临猗县| 霍林郭勒市| 渝北区| 河池市| 通化县| 曲靖市| 伊金霍洛旗| 乌恰县| 广丰县| 天峨县| 武功县| 朔州市| 望城县| 通山县| 珠海市| 德钦县| 丹阳市| 潜江市| 武平县| 北海市| 福贡县| 砚山县| 封开县| 湘潭市| 阜宁县| 潜山县|