找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation with Positive Linear Operators and Linear Combinations; Vijay Gupta,Gancho Tachev Book 2017 Springer International Publishin

[復(fù)制鏈接]
樓主: Nixon
11#
發(fā)表于 2025-3-23 11:07:51 | 只看該作者
Direct Estimates for Some New Operators,In this chapter we deal with direct estimates for some integral type operators, established in the recent years.
12#
發(fā)表于 2025-3-23 17:04:03 | 只看該作者
,Convergence for Operators Based on Pǎltǎnea Basis,In the year 1987 Chen [36] and Goodman–Sharma [81] introduced the genuine Bernstein polynomials, which preserve linear functions. Some other generalizations of Bernstein polynomials have been introduced and studied in [6, 18, 90, 100, 102, 108, 152] and [171] etc., but they only reproduce constant functions.
13#
發(fā)表于 2025-3-23 18:05:58 | 只看該作者
14#
發(fā)表于 2025-3-24 01:41:55 | 只看該作者
15#
發(fā)表于 2025-3-24 05:09:08 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:36 | 只看該作者
17#
發(fā)表于 2025-3-24 11:27:08 | 只看該作者
Springer Tracts in Modern Physics 13ry. Apart from the earlier known examples several new sequences of p.l.o. were introduced and their approximation properties have been discussed in the last few decades. There are several books in approximation theory, which deal with the linear and nonlinear operators of different kind. We mention
18#
發(fā)表于 2025-3-24 18:51:22 | 只看該作者
19#
發(fā)表于 2025-3-24 22:22:45 | 只看該作者
Springer Tracts in Modern Physics 13suppose the same definitions for the weight function .(.) and for the domain . of the operators . To establish the inverse results for approximation by .. we need two Bernstein type inequalities and the Berens–Lorentz lemma, which results we formulate as follows:
20#
發(fā)表于 2025-3-24 23:25:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘孜| 修武县| 乳山市| 沙河市| 大荔县| 行唐县| 阳曲县| 巴楚县| 商河县| 浦江县| 伊吾县| 文山县| 石泉县| 津市市| 湾仔区| 霞浦县| 信宜市| 肃北| 观塘区| 霍城县| 淮北市| 泸西县| 宁晋县| 常州市| 社旗县| 洛隆县| 台北县| 普兰店市| 博白县| 凤台县| 社会| 富裕县| 博爱县| 灯塔市| 咸阳市| 定边县| 江华| 怀来县| 扶余县| 宜都市| 衡东县|