找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation Theory, Spline Functions and Applications; S. P. Singh Book 1992 Springer Science+Business Media Dordrecht 1992 Invariant.Ma

[復(fù)制鏈接]
樓主: Disclose
51#
發(fā)表于 2025-3-30 10:06:54 | 只看該作者
52#
發(fā)表于 2025-3-30 14:16:48 | 只看該作者
53#
發(fā)表于 2025-3-30 16:37:15 | 只看該作者
,The Equivalence of the Usual and Quotient Topologies for ,,(,) when , ? ∝, is Whitney p-Regular,e of the continuity constants. It follows that in the equivalence of Markov and Sobolev type inequalities given in [2], the quotient norm may be replaced by the usual norm in case E is Whitney p-regular.
54#
發(fā)表于 2025-3-31 00:17:26 | 只看該作者
55#
發(fā)表于 2025-3-31 03:43:01 | 只看該作者
56#
發(fā)表于 2025-3-31 08:27:40 | 只看該作者
57#
發(fā)表于 2025-3-31 11:04:23 | 只看該作者
Rational Hermite Interpolation in One and More Variables,n scheme and a non-branched continued fraction representation, both for the non-degenerate and the degenerate case. For general data sets only results for ordinary rational interpolation in the case of non-degeneracy were obtained in [CUYTd].
58#
發(fā)表于 2025-3-31 15:13:10 | 只看該作者
1389-2185 villa del Mare, Maratea, Italy between April 28,1991 and May 9, 1991. The principal aim of the Advanced Study Institute, as reflected in these Proceedings, was to bring together recent and up-to-date developments of the subject, and to give directions for future research. Amongst the main topics cov
59#
發(fā)表于 2025-3-31 17:45:17 | 只看該作者
60#
發(fā)表于 2025-4-1 00:14:26 | 只看該作者
,Die H?mangiome und ihre Behandlung,troduce a refined concept of an approximation scheme with respect to which a refined concept of n-widths can be defined. Theorems about generalized n-widths illustrate the fact that this is a genuine generalization. We finish by the question of finding concept of n-widths in the context of Orlicz modular spaces.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 05:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
饶河县| 全州县| 临邑县| 个旧市| 绍兴县| 佛山市| 金沙县| 辰溪县| 同仁县| 阿克苏市| 凤城市| 桐柏县| 新巴尔虎左旗| 铜鼓县| 磴口县| 保山市| 蕲春县| 侯马市| 酒泉市| 洪江市| 建平县| 永福县| 体育| 诸暨市| 河南省| 阿合奇县| 富源县| 富裕县| 神木县| 辽中县| 科尔| 扎鲁特旗| 当雄县| 阿瓦提县| 沁源县| 河南省| 防城港市| 广灵县| 莱西市| 泸溪县| 当雄县|