找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation Theory and Spline Functions; S. P. Singh,J. W. H. Burry,B. Watson Book 1984 D. Reidel Publishing Company, Dordrecht, Holland

[復(fù)制鏈接]
樓主: Adams
41#
發(fā)表于 2025-3-28 16:41:29 | 只看該作者
42#
發(fā)表于 2025-3-28 20:10:22 | 只看該作者
On Spaces of Piecewise Polynomials in Two Variables,The purpose of this paper is to survey the progress which has been made in the last several years in developing a theory for spaces of piecewise polynomials in two variables. The ultimate goal for this area would be to have a complete analog of the univariate theory, but as we shall see, much remains to be done.
43#
發(fā)表于 2025-3-29 02:31:29 | 只看該作者
44#
發(fā)表于 2025-3-29 06:43:02 | 只看該作者
45#
發(fā)表于 2025-3-29 09:00:22 | 只看該作者
46#
發(fā)表于 2025-3-29 13:01:55 | 只看該作者
B-Splines on the Circle and Trigonometric B-Splines,We shall first introduce the notion of circle splines. Denote by Π. the space of polynomials of degree at most n on the unit circle U = {z € (?: |z| = 1}.
47#
發(fā)表于 2025-3-29 16:37:08 | 只看該作者
48#
發(fā)表于 2025-3-29 23:17:15 | 只看該作者
Four Lectures on Multivariate Approximation,(many-variable) approximation. In either case, the central problem of best approximation can be stated thus: a Banach space X and a subspace Y of X are prescribed, and for a particular x ∈ X we seek a best approximation of x in Y.
49#
發(fā)表于 2025-3-30 03:10:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:45:06 | 只看該作者
Birkhoff Interpolation on the Roots of Unity,, the general problem of Birkhoff interpolation on the roots of unity has not received enough attention. Even for a three row incidence matrix E we do not know any simple criterion for settling its regularity on the cube roots of unity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳西县| 吉安市| 方城县| 从化市| 营口市| 称多县| 桃园市| 岑巩县| 大港区| 姚安县| 内黄县| 苏尼特左旗| 河南省| 岢岚县| 同心县| 理塘县| 监利县| 梅河口市| 横峰县| 绵竹市| 临邑县| 塔河县| 忻城县| 清水河县| 阿瓦提县| 临武县| 农安县| 新津县| 新巴尔虎右旗| 海阳市| 都匀市| 民丰县| 许昌市| 聊城市| 阳谷县| 临湘市| 乌鲁木齐县| 旬阳县| 香河县| 萍乡市| 温泉县|