找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approaching the Kannan-Lovász-Simonovits and Variance Conjectures; David Alonso-Gutiérrez,Jesús Bastero Book 2015 Springer International P

[復(fù)制鏈接]
樓主: 螺絲刀
11#
發(fā)表于 2025-3-23 11:58:53 | 只看該作者
https://doi.org/10.1007/978-3-319-13263-146Bxx,52Axx,60-XX,28Axx; ; Convex bodies; Isoperimetric inequalities; Poincaré‘s inequalities for log-co
12#
發(fā)表于 2025-3-23 15:45:57 | 只看該作者
13#
發(fā)表于 2025-3-23 19:16:46 | 只看該作者
14#
發(fā)表于 2025-3-24 00:41:31 | 只看該作者
Karrierestart und Zukunftssicherungblem will be sketched. Besides, the reader can find in this chapter a sketch of the proof of the best general estimate of the thin-shell width known up to now, due to Guédon and Milman, and how the variance conjecture, despite of being weaker than the KLS conjecture, implies the latter up to a logarithmic factor, as Eldan proved.
15#
發(fā)表于 2025-3-24 04:02:25 | 只看該作者
The Conjectures,iginally posed in relation with some problems in theoretical computer science, and the variance conjecture, which appeared independently in relation with the central limit problem for isotropic convex bodies and is a particular case of the KLS conjecture. The relation of the KLS conjecture with Chee
16#
發(fā)表于 2025-3-24 07:32:25 | 只看該作者
Relating the Conjectures,blem will be sketched. Besides, the reader can find in this chapter a sketch of the proof of the best general estimate of the thin-shell width known up to now, due to Guédon and Milman, and how the variance conjecture, despite of being weaker than the KLS conjecture, implies the latter up to a logar
17#
發(fā)表于 2025-3-24 13:36:17 | 只看該作者
Book 2015e, these Lecture Notes present the theory in an accessible way, so that interested readers, even those who are not experts in the field, will be able to appreciate the treated topics. Offering a presentation suitable for professionals with little background in analysis, geometry or probability, the
18#
發(fā)表于 2025-3-24 15:30:22 | 只看該作者
19#
發(fā)表于 2025-3-24 21:20:03 | 只看該作者
https://doi.org/10.1007/978-3-8349-6538-7will be explained. Regarding the variance conjecture, it will be explained how this conjecture is equivalent to the thin-shell width conjecture and how it is implied by a strong property in some log-concave measures: The square negative correlation property.
20#
發(fā)表于 2025-3-24 23:32:56 | 只看該作者
The Conjectures,will be explained. Regarding the variance conjecture, it will be explained how this conjecture is equivalent to the thin-shell width conjecture and how it is implied by a strong property in some log-concave measures: The square negative correlation property.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乡| 汉川市| 陇西县| 凌海市| 德江县| 卓尼县| 斗六市| 贵阳市| 扶风县| 平阳县| 土默特左旗| 远安县| 大兴区| 汕尾市| 新乐市| 永福县| 克东县| 安塞县| 南陵县| 庐江县| 聂拉木县| 鲁甸县| 承德县| 夏邑县| 东乡| 黄陵县| 方山县| 大冶市| 加查县| 同仁县| 临江市| 新密市| 东源县| 惠东县| 洪雅县| 龙陵县| 华宁县| 凯里市| 喀喇| 兰溪市| 合江县|