找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Soft Computing and Communication Networks; Proceedings of ACN 2 Sabu M. Thampi,Jaime Lloret Mauri,Axel Sikora Conference proceeding

[復(fù)制鏈接]
樓主: HBA1C
21#
發(fā)表于 2025-3-25 03:46:33 | 只看該作者
22#
發(fā)表于 2025-3-25 11:24:56 | 只看該作者
2367-3370 were carefully reviewed and selected from several initial submissions.? The book is directed to the researchers and scientists engaged in various fields of intelligent systems..978-981-33-6172-0978-981-33-6173-7Series ISSN 2367-3370 Series E-ISSN 2367-3389
23#
發(fā)表于 2025-3-25 14:30:29 | 只看該作者
Conference proceedings 20210) held in VIT, Chennai, India, during October 14–17, 2020. The research papers presented were carefully reviewed and selected from several initial submissions.? The book is directed to the researchers and scientists engaged in various fields of intelligent systems..
24#
發(fā)表于 2025-3-25 16:28:59 | 只看該作者
25#
發(fā)表于 2025-3-25 22:39:20 | 只看該作者
C. León,R. León,F. Vázquez-Poloy, precision, recall, F1 and prediction time. Experimental results of the model built demonstrated 99.92667% accuracy, 0.22 s predicting time in CICDDoS2019 and 96.2% accuracy, 0.12 s predicting time in UNSW-NB15 dataset in the instance of Random Forest classifier which is higher than other classification algorithms.
26#
發(fā)表于 2025-3-26 00:18:21 | 只看該作者
27#
發(fā)表于 2025-3-26 05:48:00 | 只看該作者
28#
發(fā)表于 2025-3-26 11:02:11 | 只看該作者
Distributed Denial of Service (DDoS) Attacks Detection: A Machine Learning Approach,y, precision, recall, F1 and prediction time. Experimental results of the model built demonstrated 99.92667% accuracy, 0.22 s predicting time in CICDDoS2019 and 96.2% accuracy, 0.12 s predicting time in UNSW-NB15 dataset in the instance of Random Forest classifier which is higher than other classification algorithms.
29#
發(fā)表于 2025-3-26 12:51:30 | 只看該作者
30#
發(fā)表于 2025-3-26 18:33:59 | 只看該作者
https://doi.org/10.1007/978-3-030-62669-3nd the DEAP dataset is used for other emotions. A depressed individual can get out of his sad mental state with the aid of this system. Angry, excited, pleasant and sad emotions are classified with the aid of Support Vector Machine and respective soothing videos for each emotion are played in the virtual world.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 14:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
哈尔滨市| 平利县| 凤台县| 内丘县| 烟台市| 全南县| 礼泉县| 绥阳县| 衡南县| 丁青县| 承德县| 昭通市| 阿尔山市| 济宁市| 临清市| 平江县| 扎鲁特旗| 谢通门县| 蒙城县| 南华县| 新建县| 淳化县| 黄平县| 襄垣县| 上饶市| 巴青县| 山阳县| 陆良县| 呼伦贝尔市| 舞阳县| 桂平市| 大邑县| 凤山市| 高平市| 渭南市| 沙坪坝区| 盐源县| 渝中区| 得荣县| 沙坪坝区| 玉林市|