找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Reconfigurable Computing. Architectures, Tools, and Applications; 14th International S Nikolaos Voros,Michael Huebner,Pedro C. Dini

[復(fù)制鏈接]
樓主: 巡洋
51#
發(fā)表于 2025-3-30 09:37:55 | 只看該作者
Applied Reconfigurable Computing. Architectures, Tools, and Applications14th International S
52#
發(fā)表于 2025-3-30 14:19:53 | 只看該作者
Stacia Ryder,Michael Mikulewiczperformance LSTM execution in time-constrained applications. Quantitative evaluation on a real-life image captioning application indicates that the proposed system required up?to 6.5. less time to achieve the same application-level accuracy compared to a baseline method, while achieving an average o
53#
發(fā)表于 2025-3-30 20:19:31 | 只看該作者
Potential and Flow Visualizationlly provide insightful observation. For example, one of our tests show 32-bit floating point is more hardware efficient than 1-bit parameters to achieve 99% MNIST accuracy. In general, 2-bit and 4-bit fixed point parameters show better hardware trade-off on small-scale datasets like MNIST and CIFAR-
54#
發(fā)表于 2025-3-30 21:49:26 | 只看該作者
55#
發(fā)表于 2025-3-31 03:26:34 | 只看該作者
Matthew H. England,Peter R. Oke relevant information. Through this paper, we present ReneGENE-GI, an innovatively engineered GI pipeline. We also present the performance analysis of ReneGENE-GI’s Comparative Genomics Module (CGM), prototyped on a reconfigurable bio-computing accelerator platform. Alignment time for this prototype
56#
發(fā)表于 2025-3-31 06:51:59 | 只看該作者
Approximate FPGA-Based LSTMs Under Computation Time Constraintsing Artificial Intelligence tasks. Nevertheless, the highest performing LSTM models are becoming increasingly demanding in terms of computational and memory load. At the same time, emerging latency-sensitive applications including mobile robots and autonomous vehicles often operate under stringent c
57#
發(fā)表于 2025-3-31 09:26:22 | 只看該作者
Redundancy-Reduced MobileNet Acceleration on Reconfigurable Logic for ImageNet Classificationred to many conventional feature-based computer vision algorithms. However, the high computational complexity of CNN models can lead to low system performance in power-efficient applications. In this work, we firstly highlight two levels of model redundancy which widely exist in modern CNNs. Additio
58#
發(fā)表于 2025-3-31 15:53:40 | 只看該作者
59#
發(fā)表于 2025-3-31 18:41:58 | 只看該作者
Deep Learning on High Performance FPGA Switching Boards: Flow-in-Cloudnected to other nodes. Unlike other multi-FPGA systems, the circuit switching fabric with the STDM (Static Time Division Multiplexing) is implemented on the FPGA for predictable communication and cost-efficient data broadcasting. Parallel convolution modules for AlexNet are implemented on FiC-SW1 pr
60#
發(fā)表于 2025-3-31 23:50:02 | 只看該作者
SqueezeJet: High-Level Synthesis Accelerator Design for Deep Convolutional Neural Networkssuch as object recognition and object detection. Most of these solutions come at a huge computational cost, requiring billions of multiply-accumulate operations and, thus, making their use quite challenging in real-time applications that run on embedded mobile (resource-power constrained) hardware.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 19:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米林县| 普兰店市| 德化县| 济南市| 遂宁市| 拉萨市| 平安县| 白银市| 镇安县| 新野县| 茂名市| 资兴市| 新昌县| 宣武区| 陇南市| 富顺县| 东海县| 武安市| 九龙坡区| 双牌县| 黔南| 洞口县| 兴城市| 富蕴县| 洪湖市| 天津市| 永安市| 马龙县| 辽中县| 华蓥市| 阿鲁科尔沁旗| 武城县| 宁河县| 滦南县| 福安市| 白河县| 桐梓县| 合作市| 江永县| 鹤峰县| 南溪县|