找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Mathematics: Body and Soul; Volume 2: Integrals Kenneth Eriksson,Donald Estep,Claes Johnson Textbook 2004 Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: 空隙
21#
發(fā)表于 2025-3-25 04:18:06 | 只看該作者
https://doi.org/10.1007/978-3-8349-9918-4a for the primitive function in terms of known functions. For example we can give a formula for a primitive function of a polynomial as another polynomial. We will return in Chapter . to the question of finding analytical formulas for primitive functions of certain classes of functions. The Fundamen
22#
發(fā)表于 2025-3-25 10:06:16 | 只看該作者
https://doi.org/10.1007/978-3-663-13445-9initial conditions because the problem involves a second order derivative. We may compare with the first order initial value problem: .′(.) = ?.(.) for . > 0, .(0) = .., with the solution .(.) = exp(?.), which we studied in the previous chapter.
23#
發(fā)表于 2025-3-25 13:13:50 | 只看該作者
24#
發(fā)表于 2025-3-25 15:52:46 | 只看該作者
https://doi.org/10.1007/978-3-531-20000-2r unbounded intervals. We call such integrals ., or sometimes (more properly) . integrals. We compute these integrals using the basic results on convergence of sequences that we have already developed.
25#
發(fā)表于 2025-3-25 20:55:10 | 只看該作者
Isabell van Ackeren,Klaus Klemm, and an . with an infinite number of terms. A finite series does not pose any mysteries; we can, at least in principle, compute the sum of a finite series by adding the terms one-by-one, given enough time. The concept of an infinite series requires some explanation, since we cannot actually add an
26#
發(fā)表于 2025-3-26 02:15:21 | 只看該作者
27#
發(fā)表于 2025-3-26 06:46:49 | 只看該作者
28#
發(fā)表于 2025-3-26 10:30:16 | 只看該作者
Isabell van Ackeren,Klaus Klemm [0, 1] → ?. is a given bounded and Lipschitz continuous function, .. ∈ ?. is a given initial value, and . ≥ 1 is the dimension of the system. The reader may assume . = 2 or . = 3, recalling the chapters on analytic geometry in ?. and ?., and extend to the case . > 3 after having read the chapter on
29#
發(fā)表于 2025-3-26 12:56:26 | 只看該作者
30#
發(fā)表于 2025-3-26 20:36:48 | 只看該作者
Die Abwehr des Typhus bei den Feldarmeen,or . ∈ ?.. We recall that if . is non-singular with non-zero determinant, then the solution . ∈ ?. is theoretically given by Cramer’s formula. However if . is large, the computational work in using Cramer’s formula is prohibitively large, so we need to find a more efficient means of computing the so
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岑巩县| 花莲县| 墨玉县| 木兰县| 白银市| 比如县| 阿克陶县| 曲沃县| 天台县| 慈利县| 铜川市| 聂拉木县| 郧西县| 朝阳县| 崇左市| 太湖县| 玉树县| 清原| 邓州市| 墨竹工卡县| 襄樊市| 定州市| 濮阳县| 荃湾区| 涟水县| 习水县| 华安县| 汨罗市| 六盘水市| 定襄县| 武平县| 庆云县| 县级市| 南丹县| 通渭县| 绍兴县| 无棣县| 青浦区| 上犹县| 章丘市| 湘潭县|