找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Applied Machine Learning; David Forsyth Textbook 2019 Springer Nature Switzerland AG 2019 machine learning.naive bayes.nearest neighbor.SV

[復(fù)制鏈接]
樓主: 母牛膽小鬼
51#
發(fā)表于 2025-3-30 10:32:56 | 只看該作者
52#
發(fā)表于 2025-3-30 15:10:34 | 只看該作者
High Dimensional Data is hard to plot, though Sect. 4.1 suggests some tricks that are helpful. Most readers will already know the mean as a summary (it’s an easy generalization of the 1D mean). The covariance matrix may be less familiar. This is a collection of all covariances between pairs of components. We use covaria
53#
發(fā)表于 2025-3-30 16:48:18 | 只看該作者
Principal Component Analysistem, we can set some components to zero, and get a representation of the data that is still accurate. The rotation and translation can be undone, yielding a dataset that is in the same coordinates as the original, but lower dimensional. The new dataset is a good approximation to the old dataset. All
54#
發(fā)表于 2025-3-30 22:31:13 | 只看該作者
Low Rank Approximationsate points. This data matrix must have low rank (because the model is low dimensional) . it must be close to the original data matrix (because the model is accurate). This suggests modelling data with a low rank matrix.
55#
發(fā)表于 2025-3-31 01:40:23 | 只看該作者
56#
發(fā)表于 2025-3-31 06:32:09 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 05:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清河县| 肇庆市| 简阳市| 三门县| 正镶白旗| 宝丰县| 明星| 五原县| 革吉县| 柳林县| 思茅市| 鄂托克旗| 深州市| 遵义县| 云和县| 上林县| 兴化市| 望谟县| 治多县| 库尔勒市| 玉屏| 香格里拉县| 万安县| 专栏| 馆陶县| 祁东县| 恩平市| 隆德县| 大冶市| 凯里市| 什邡市| 比如县| 屏东县| 凌海市| 台州市| 即墨市| 连平县| 宁强县| 嵩明县| 河池市| 封开县|