找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Fractional Calculus in Identification and Control; Utkal Mehta,Kishore Bingi,Sahaj Saxena Book 2022 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: 詭計(jì)
11#
發(fā)表于 2025-3-23 10:39:05 | 只看該作者
Meeting the Cybersecurity Challengeribed fractional operator preserves some analytical properties of the original function like continuity and boundedness. Further, this chapter discusses applying one of the fractional calculus formulations called the Weyl-Marchaud fractional derivative on the quadratic fractal interpolation function
12#
發(fā)表于 2025-3-23 13:55:36 | 只看該作者
Managing an Enterprise Cybersecurity Programme reaction and stochastic chaotic behaviors. Firstly, we give a representation of the solution for a stochastic fractional-order chaotic system (CS). Secondly, some sufficient beneficial conditions are investigated using matrix-type Mittag-Leffler (M-L) function, Jacobian matrix via stochastic proc
13#
發(fā)表于 2025-3-23 19:28:31 | 只看該作者
14#
發(fā)表于 2025-3-24 00:27:44 | 只看該作者
Operating Enterprise Cybersecuritynd inductor in the realization of the filter circuit. The quality factors and the asymmetric slope magnitude responses of the FONF have been optimized using a well-known particle swarm optimization technique. After the optimized fractional-order ., the filter was verified in simulation and then veri
15#
發(fā)表于 2025-3-24 05:08:03 | 只看該作者
https://doi.org/10.1007/978-981-16-6823-4nal controller in the basic IMC control loop, which broadens the applicability of IMC and can be used to enhance the performance and robustness of the close loop system. In this work, the additional controller is used to enhance the bandwidth of the close loop system. The IMC controller constitutes
16#
發(fā)表于 2025-3-24 06:32:18 | 只看該作者
17#
發(fā)表于 2025-3-24 11:53:37 | 只看該作者
Enterprise Design, Operations, and Computingn stability is remarkable when the fast-reacting system like interconnected power generation control. The idea of ever-improving fractional calculus is being incorporated into the control aspect of the whole power system. With the proven practical viability of proportional integral (PI) control, two
18#
發(fā)表于 2025-3-24 16:39:13 | 只看該作者
19#
發(fā)表于 2025-3-24 19:18:20 | 只看該作者
20#
發(fā)表于 2025-3-25 02:23:31 | 只看該作者
Utkal Mehta,Kishore Bingi,Sahaj SaxenaInvestigates the fractional calculus-based approaches and their benefits.Covers most of the studies on linear and nonlinear systems using fractional-order integro-differential operators.Offers novel a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东莞市| 兴城市| 崇州市| 潮安县| 漾濞| 黑河市| 新密市| 中卫市| 金堂县| 永川市| 高密市| 逊克县| 蕲春县| 三门县| 墨竹工卡县| 吴忠市| 瑞昌市| 花莲市| 台北市| 兴业县| 安新县| 广丰县| 卓资县| 西乡县| 岳西县| 洪江市| 精河县| 苍山县| 天全县| 桓仁| 沈阳市| 佛坪县| 两当县| 海门市| 松滋市| 开阳县| 牡丹江市| 旬邑县| 彩票| 磐石市| 洪江市|