找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Analysis, Optimization and Soft Computing; ICNAAO-2021, Varanas Tanmoy Som,Debdas Ghosh,Dayaram Sahu Conference proceedings 2023 Th

[復制鏈接]
樓主: 決絕
41#
發(fā)表于 2025-3-28 14:34:26 | 只看該作者
Energy and Environmental Scenario of Indiacted by exploring the fractal integral of A-fractal function with predefined initial conditions. In addition, a fractional operator is presented, which takes each vector-valued continuous function to its fractal integral.
42#
發(fā)表于 2025-3-28 22:22:45 | 只看該作者
43#
發(fā)表于 2025-3-29 00:51:13 | 只看該作者
Fractional Operator Associated with the Fractal Integral of A-Fractal Functioncted by exploring the fractal integral of A-fractal function with predefined initial conditions. In addition, a fractional operator is presented, which takes each vector-valued continuous function to its fractal integral.
44#
發(fā)表于 2025-3-29 03:16:39 | 只看該作者
45#
發(fā)表于 2025-3-29 10:00:52 | 只看該作者
Conference proceedings 2023at the Department of Mathematics Sciences, Indian Institute of Technology (BHU) Varanasi, India, from 21–23 December 2021. The book discusses topics in the areas of nonlinear analysis, fixed point theory, dynamical systems, optimization, fractals, applications to differential/integral equations, sig
46#
發(fā)表于 2025-3-29 15:17:18 | 只看該作者
47#
發(fā)表于 2025-3-29 17:58:24 | 只看該作者
48#
發(fā)表于 2025-3-29 22:37:26 | 只看該作者
49#
發(fā)表于 2025-3-30 00:19:01 | 只看該作者
50#
發(fā)表于 2025-3-30 04:20:34 | 只看該作者
A Note on?Complex-Valued Fractal Functions on?the?Sierpiński Gasketvalued fractal operator defined on the Sierpiński gasket (. in short). We also calculate the bound for the perturbation error on .. Furthermore, we prove that the complex-valued fractal operator is bounded. In the last part, we establish the connection between the norm of the real-valued fractal operator and the complex-valued fractal operator.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 01:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
夹江县| 嵊州市| 石狮市| 桐梓县| 舞钢市| 嘉峪关市| 通州市| 承德市| 商洛市| 呼图壁县| 简阳市| 深水埗区| 古蔺县| 蒙自县| 常州市| 楚雄市| 辉南县| 罗定市| 唐山市| 顺昌县| 北碚区| 八宿县| 化德县| 娄底市| 乌苏市| 内丘县| 明光市| 永顺县| 渝北区| 临高县| 静海县| 临高县| 冷水江市| 易门县| 油尖旺区| 元江| 孟村| 闻喜县| 云霄县| 来凤县| 大方县|