找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Lie Groups to Differential Equations; Peter J. Olver Textbook 19861st edition Springer-Verlag New York Inc. 1986 Applicati

[復(fù)制鏈接]
樓主: FARCE
21#
發(fā)表于 2025-3-25 06:50:52 | 只看該作者
Generalized Symmetries,it appears that the possession of an infinite number of such symmetries is a characterizing property of “solvable” equations, such as the Korteweg-de Vries equation, which have “soliton” solutions or can be linearized either directly or via inverse scattering.
22#
發(fā)表于 2025-3-25 10:38:31 | 只看該作者
23#
發(fā)表于 2025-3-25 13:03:46 | 只看該作者
https://doi.org/10.1007/978-3-663-16016-8equations for which the Lagrangian viewpoint, even if applicable, no longer is appropriate or natural to the problem. In this case, the Hamiltonian formulation of systems of evolution equations assumes the natural variational role for the system.
24#
發(fā)表于 2025-3-25 15:58:53 | 只看該作者
0072-5285 ial equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie gr
25#
發(fā)表于 2025-3-25 23:04:41 | 只看該作者
Finite-Dimensional Hamiltonian Systems, of this vast subject, namely the interplay between symmetry groups, conservation laws and reduction in order for systems in Hamiltonian form. The Hamiltonian version of Noether’s theorem has a particularly attractive geometrical flavour, which remains somewhat masked in our previous Lagrangian framework.
26#
發(fā)表于 2025-3-26 03:28:07 | 只看該作者
Hamiltonian Methods for Evolution Equations,equations for which the Lagrangian viewpoint, even if applicable, no longer is appropriate or natural to the problem. In this case, the Hamiltonian formulation of systems of evolution equations assumes the natural variational role for the system.
27#
發(fā)表于 2025-3-26 04:57:05 | 只看該作者
28#
發(fā)表于 2025-3-26 11:34:55 | 只看該作者
29#
發(fā)表于 2025-3-26 16:39:12 | 只看該作者
https://doi.org/10.1007/978-1-4684-0274-2Applications; Equations; Groups; Lie; group theory
30#
發(fā)表于 2025-3-26 17:51:42 | 只看該作者
Springer-Verlag New York Inc. 1986
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 08:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
厦门市| 当阳市| 东山县| 泽普县| 永德县| 安平县| 兖州市| 界首市| 徐水县| 城固县| 邹平县| 鲁山县| 金平| 南汇区| 图木舒克市| 将乐县| 玛曲县| 沭阳县| 合川市| 饶河县| 凤庆县| 旬阳县| 杨浦区| 温州市| 宝丰县| 兴义市| 肇东市| 凤凰县| 兰州市| 香港 | 建阳市| 余干县| 托克托县| 晋宁县| 韩城市| 酒泉市| 温泉县| 天峨县| 武城县| 洞头县| 张家港市|