找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Geometric Algebra in Computer Science and Engineering; Leo Dorst,Chris Doran,Joan Lasenby Book 2002 Springer Science+Busin

[復制鏈接]
樓主: 動詞
41#
發(fā)表于 2025-3-28 17:46:15 | 只看該作者
A Toy Vector Field Based on Geometric Algebraon over C, which is the traditional approach for such work. Such “toy” vector fields are useful for instruction, understanding and topological simulation of many issues associated with all vector fields.
42#
發(fā)表于 2025-3-28 22:45:54 | 只看該作者
43#
發(fā)表于 2025-3-29 02:33:06 | 只看該作者
44#
發(fā)表于 2025-3-29 05:20:45 | 只看該作者
Compound Matrices and Pfaffians: A Representation of Geometric Algebracertain matrices which can be understood as the skew symmetric counterpart of the corresponding Gramians. Based on this representation we calculate the .th Clifford power . of a vector . ∈ .. which enables the extension of an analytical function . : . → . to their corresponding Clifford function .:.. → ..(.).
45#
發(fā)表于 2025-3-29 10:43:35 | 只看該作者
Jet Bundles and the Formal Theory of Partial Differential Equationsathematical underpinnings of involution (which lie in the theory of combinatorial decompositions of polynomial modules [.,.]) nor other applications of the theory of jet bundles such as the theory of symmetries of systems of PDEs [.] or discretisation schemes based on discrete approximations to jet bundles [.].
46#
發(fā)表于 2025-3-29 15:28:07 | 只看該作者
47#
發(fā)表于 2025-3-29 16:10:43 | 只看該作者
48#
發(fā)表于 2025-3-29 21:37:17 | 只看該作者
Anne L. C. Runehov,Lluis Oviedordinate control element (usually cubical or simplicial). The combinatorics of the starplex matches exactly the combinatorial structure of the multivector: every oriented k-cell in the starplex corresponds to some basis K-vector.
49#
發(fā)表于 2025-3-30 03:36:34 | 只看該作者
50#
發(fā)表于 2025-3-30 05:53:23 | 只看該作者
Encyclopedia of Sciences and Religionsmonstrated that the matrix basis of a Clifford number can be used to calculate the inverse of a Clifford number using the characteristic equation of the matrix and powers of the Clifford number. Examples are given for the algebras Clifford(2), Clifford(3) and Clifford(2,2).
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
班玛县| 晋中市| 中方县| 永丰县| 山阴县| 会东县| 肇庆市| 苗栗县| 平谷区| 海南省| 巴马| 泰安市| 静宁县| 兰溪市| 澎湖县| 上虞市| 揭阳市| 鄯善县| 潜山县| 团风县| 平利县| 军事| 怀化市| 蒙自县| 玉田县| 盖州市| 长兴县| 内黄县| 龙川县| 马关县| 阆中市| 木里| 富民县| 左贡县| 互助| 酒泉市| 兴文县| 当雄县| 祁连县| 临沧市| 达孜县|