找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Fibonacci Numbers; Volume 2 A. N. Philippou,A. F. Horadam,G. E. Bergum Book 1988 Springer Science+Business Media B.V. 1988

[復(fù)制鏈接]
樓主: Extraneous
51#
發(fā)表于 2025-3-30 12:04:26 | 只看該作者
52#
發(fā)表于 2025-3-30 12:30:02 | 只看該作者
Adaptive Educational Hypermedia Systemsal elements in these sequences. Restrictions on n such that F. = 0 (mod d) can always be determined. However, for n ε{5, 8, 10, 12, 13, 15, 16, 17, 20} there does not exist an n-value such that L. = 0 (mod d).
53#
發(fā)表于 2025-3-30 18:14:09 | 只看該作者
Book 1988 Australia xiii THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERN A TIONAL COMMITTEE Bergum, G., Chairman Philippou, A. (Greece), Chairman Edgar, H., Co-chalrman Horadam, A. (Australia), Co-chalrman Bergum, G. (U.s.A.) Thoro, D. Kiss, P. (Hungary) Johnson, M. Long, C. (U.S.A.) Lange, L.
54#
發(fā)表于 2025-3-30 21:36:12 | 只看該作者
Fermat-Like Binomial Equations,resent this conjecture, which is also called ”Fermat’s Last Theorem”, is known to be true for all n ≤ 125 000 [1]. Moreover, the recent work of G. Faltings (see [1]) implies that, for each n ≥ 3, (1) has at most a finite number of solutions (x, y, z), with (x, y, z) = 1 and xyz ≠ 0.
55#
發(fā)表于 2025-3-31 00:55:13 | 只看該作者
Symmetric Recursive Sequences Mod M,e, one of the main targets for this study. Indeed, {log F.} is uniformly distributed mod 1, so that {F.} obeys Benford’s law, detailed study of which is carried out in [6]. In this note we are going to treat uniform distribution properties of certain recursive integer sequences in residue classes.
56#
發(fā)表于 2025-3-31 07:39:46 | 只看該作者
57#
發(fā)表于 2025-3-31 12:02:03 | 只看該作者
A Congruence Relation for a Linear Recursive Sequence of Arbitrary Order,ecomes the null sequence. In this case Theorems 1 and 2 below are trivial.) In (1) m ≥ 0 is a fixed integer. We referee to (1) as an (m+1)th order recurrence relation or an (m+1)th order difference equation. Thus {T.} is an integer sequence. The purpose of our present paper is to generalize results
58#
發(fā)表于 2025-3-31 16:01:18 | 只看該作者
Fibonacci Numbers and Groups,of it which are relevant to the present paper. In the remaining sections we discuss links, occurring in our work over a number of years, between this topic and the Fibonacci and Lucas sequences of numbers (f.) and (g.)
59#
發(fā)表于 2025-3-31 17:33:32 | 只看該作者
60#
發(fā)表于 2025-4-1 00:41:53 | 只看該作者
On the Representation of Integral Sequences {Fn/d} and {Ln/d} as Sums of Fibonacci Numbers and as S/1/, the purpose of this study is the development of relationships which enable prediction of the NUMBER of addends in these representations. Integral sequences {F./d} and {L./d} are considered such that d, with 2 is a predetermined integer and n is subject to appropriate conditions to assure integr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 16:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
依兰县| 新化县| 闻喜县| 化德县| 台北市| 顺昌县| 军事| 穆棱市| 舞钢市| 长垣县| 田林县| 扎囊县| 武强县| 开平市| 武陟县| 大渡口区| 乡城县| 太白县| 封开县| 昌图县| 家居| 保德县| 咸丰县| 阜康市| 福贡县| 胶州市| 新平| 韩城市| 施甸县| 通许县| 渭源县| 定安县| 嘉善县| 宁强县| 涞源县| 芮城县| 昌邑市| 琼海市| 苏州市| 永城市| 平泉县|