找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Application-Specific Arithmetic; Computing Just Right Florent de Dinechin,Martin Kumm Book 2024 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
樓主: 積聚
11#
發(fā)表于 2025-3-23 11:42:55 | 只看該作者
12#
發(fā)表于 2025-3-23 14:18:12 | 只看該作者
Florent de Dinechin,Martin KummPresents a unique focus on application-specific computer arithmetic.Helps developers gain a deep understanding of the arithmetic in their projects, and tailor it to their application.Illustrates conce
13#
發(fā)表于 2025-3-23 19:50:33 | 只看該作者
http://image.papertrans.cn/a/image/159207.jpg
14#
發(fā)表于 2025-3-23 23:03:27 | 只看該作者
Lecture Notes in Networks and SystemsComputer arithmetic is the art of representing and processing numbers in a machine. It has its roots in the abacus of ancient times and in the mechanical calculator built by Schickhard, Pascal, Leibniz, and others during the Renaissance. It has also been at the core of electronic computers since the dawn of this technology in the 1940s.
15#
發(fā)表于 2025-3-24 03:18:03 | 只看該作者
16#
發(fā)表于 2025-3-24 10:24:09 | 只看該作者
Ajith Abraham,Paramartha Dutta,Soumi DuttaField programmable gate arrays (FPGAs) are a natural target for application-specific arithmetic, and many of the techniques developed in this book were motivated by FPGA applications. This chapter gives a brief overview of FPGA architectural features relevant to application-specific arithmetic.
17#
發(fā)表于 2025-3-24 12:44:34 | 只看該作者
Deepshikha Thakur,Vineet Shyam,Varsha SinghThis chapter is dedicated to the Euclidean division by an integer constant. Of particular interest are small constants such as 3, 5, etc., for which several specific techniques can be used.
18#
發(fā)表于 2025-3-24 18:31:57 | 只看該作者
Horst Chmiel,Valko Mavrov,Armin F?hnrichA squarer is another useful specialization of multiplication in the case when the two inputs are identical. It is useful in all sorts of coarser components such as Euclidean norms or polynomials. Besides, operators for . for .?>?2 can also be built efficiently out of squares and multiplications.
19#
發(fā)表于 2025-3-24 21:44:51 | 只看該作者
Mirat D. Gurol,Shu-Sung Lin,Nilesh BhatThis chapter studies the possible optimizations that arise in the specialization or fusion of floating-point operators. It builds upon the specialized fixed operators of previous chapters and focuses on exponent management and rounding issues specific to floating point.
20#
發(fā)表于 2025-3-25 02:13:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 23:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻江县| 东兰县| 阿勒泰市| 沽源县| 浮山县| 浙江省| 合水县| 广汉市| 慈利县| 秭归县| 镇康县| 微博| 台湾省| 成安县| 项城市| 栾川县| 陆河县| 九龙县| 彰武县| 田东县| 安徽省| 巴林右旗| 横峰县| 伊宁县| 玉田县| 东兴市| 岢岚县| 贡嘎县| 南昌市| 涿鹿县| 云霄县| 宁远县| 石首市| 左贡县| 吴忠市| 湛江市| 西峡县| 安溪县| 万山特区| 临高县| 黄龙县|