找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Application of Holomorphic Functions in Two and Higher Dimensions; Klaus Gürlebeck,Klaus Habetha,Wolfgang Spr??ig Book 2016 Springer Inter

[復(fù)制鏈接]
樓主: 明顯
41#
發(fā)表于 2025-3-28 15:11:11 | 只看該作者
https://doi.org/10.1007/3-540-32873-4In the classical two-dimensional Vekua theory the so-called .-operator plays an essential role. This operator is nothing else than a two-dimensional weakly singular integral operator over a domain in the complex plane, which is a right inverse to the Cauchy–Riemann operator.
42#
發(fā)表于 2025-3-28 21:02:09 | 只看該作者
Uterine Environment in Early PregnancyIn 1812 D. Poisson discovered that for many applied problems the Laplace equation is only valid outside the relevant domain .. In the journal . he published one year later the first paper on an equation of the type . which now bears his name.
43#
發(fā)表于 2025-3-28 23:29:45 | 只看該作者
Basic properties of holomorphic functions,Within this book we shall use the well-known complex numbers in the plane, the quaternions in three and four dimensions, and Clifford numbers in higher dimensions. The definition for real Clifford numbers can be seen as a basis for quaternions and complex numbers.
44#
發(fā)表于 2025-3-29 03:17:04 | 只看該作者
Conformal and quasi-conformal mappings,In this short section we shall introduce a class of mappings in . named after the German mathematician AUGUST FERDINAND M?BIUS (1790–1868). In . this is also possible, but it is a bit more difficult, the reader is referred to our book [118].
45#
發(fā)表于 2025-3-29 10:08:07 | 只看該作者
Operator calculus,In the classical two-dimensional Vekua theory the so-called .-operator plays an essential role. This operator is nothing else than a two-dimensional weakly singular integral operator over a domain in the complex plane, which is a right inverse to the Cauchy–Riemann operator.
46#
發(fā)表于 2025-3-29 12:47:36 | 只看該作者
47#
發(fā)表于 2025-3-29 18:42:57 | 只看該作者
48#
發(fā)表于 2025-3-29 20:21:44 | 只看該作者
49#
發(fā)表于 2025-3-30 01:23:20 | 只看該作者
Historical Perspectiverde, wer wessen Verhalten kontrollieren durfte; wir kennen auch wohlgesonnene Autokratien, patriarchalische Organisationen und egalit?re, in welchen die Macht gleichm??ig unter den Mitgliedern verteilt ist und deren Autorit?t auf einer rational-legalen Basis fu?t. Einen einzig gültigen Weg für das M
50#
發(fā)表于 2025-3-30 05:45:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丘北县| 布尔津县| 卢湾区| 习水县| 禄丰县| 望谟县| 江源县| 沾益县| 自治县| 南昌市| 房山区| 上思县| 汨罗市| 蒲江县| 嘉祥县| 满洲里市| 格尔木市| 玉屏| 建水县| 屏东县| 邓州市| 西丰县| 辉县市| 谷城县| 京山县| 丽江市| 上高县| 亚东县| 政和县| 泸水县| 安溪县| 聊城市| 平南县| 和政县| 哈巴河县| 呼图壁县| 裕民县| 巴林右旗| 樟树市| 新田县| 顺平县|