找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Application of FPGA to Real‐Time Machine Learning; Hardware Reservoir C Piotr Antonik Book 2018 Springer International Publishing AG, part

[復(fù)制鏈接]
查看: 48883|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:20:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Application of FPGA to Real‐Time Machine Learning
期刊簡(jiǎn)稱Hardware Reservoir C
影響因子2023Piotr Antonik
視頻videohttp://file.papertrans.cn/160/159110/159110.mp4
發(fā)行地址Nominated as an outstanding Ph.D. thesis by the Université libre de Bruxelles, Belgium.Provides a thorough introduction to reservoir computing and field-programmable gate arrays.Discusses the problems
學(xué)科分類Springer Theses
圖書(shū)封面Titlebook: Application of FPGA to Real‐Time Machine Learning; Hardware Reservoir C Piotr Antonik Book 2018 Springer International Publishing AG, part
影響因子This book lies at the interface of machine learning – a subfield of computer science that develops algorithms for challenging tasks such as shape or image recognition, where traditional algorithms fail – and photonics – the physical science of light, which underlies many of the optical communications technologies used in our information society. It provides a thorough introduction to reservoir computing and field-programmable gate arrays (FPGAs)..Recently, photonic implementations of reservoir computing (a machine learning algorithm based on artificial neural networks) have made a breakthrough in optical computing possible. In this book, the author pushes the performance of these systems significantly beyond what was achieved before. By interfacing a photonic reservoir computer with a high-speed electronic device (an FPGA), the author successfully interacts with the reservoir computer in real time, allowing him to considerably expand its capabilities and range of possible applications. Furthermore, the author draws on his expertise in machine learning and FPGA programming to make progress on a very different problem, namely the real-time image analysis of optical coherence tomograp
Pindex Book 2018
The information of publication is updating

書(shū)目名稱Application of FPGA to Real‐Time Machine Learning影響因子(影響力)




書(shū)目名稱Application of FPGA to Real‐Time Machine Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱Application of FPGA to Real‐Time Machine Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Application of FPGA to Real‐Time Machine Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Application of FPGA to Real‐Time Machine Learning被引頻次




書(shū)目名稱Application of FPGA to Real‐Time Machine Learning被引頻次學(xué)科排名




書(shū)目名稱Application of FPGA to Real‐Time Machine Learning年度引用




書(shū)目名稱Application of FPGA to Real‐Time Machine Learning年度引用學(xué)科排名




書(shū)目名稱Application of FPGA to Real‐Time Machine Learning讀者反饋




書(shū)目名稱Application of FPGA to Real‐Time Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:01:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:29:33 | 只看該作者
https://doi.org/10.1007/978-3-031-08533-8 interesting, novel and even unexpected results. Here, we present a photonic reservoir computer with output feedback, and we demonstrate its capacity to generate periodic time series and to emulate chaotic systems. We study in detail the effect of experimental noise on system performance. In the cas
地板
發(fā)表于 2025-3-22 06:45:19 | 只看該作者
https://doi.org/10.1007/978-3-031-08533-8ue readout layers for photonic reservoir computers. We studied the applicability of this method using numerical simulations of an experimentally feasible reservoir computer with an analogue readout layer. We also considered a nonlinear output layer, which would be very difficult to train with tradit
5#
發(fā)表于 2025-3-22 09:28:35 | 只看該作者
Embodying Antiracist Christianityies. This issue has been recently addressed with an automated tissue characterisation method based on machine learning. However, its high demand for computational power results in runtimes too slow for clinical deployment. This chapter relates my 5-month internship in Texas and my attempt at speedin
6#
發(fā)表于 2025-3-22 14:49:09 | 只看該作者
7#
發(fā)表于 2025-3-22 19:55:25 | 只看該作者
8#
發(fā)表于 2025-3-22 22:55:17 | 只看該作者
John T. Carmody,Denise L. CarmodyIn this chapter we will address three questions: (1) What is reservoir computing? (2) What does it have to do with optics and electronics? (3) What are FPGAs?
9#
發(fā)表于 2025-3-23 03:03:15 | 只看該作者
https://doi.org/10.1007/978-3-031-37264-3It is time to conclude my thesis and discuss several perspectives.
10#
發(fā)表于 2025-3-23 07:52:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同仁县| 靖边县| 读书| 普安县| 阿合奇县| 安康市| 陆丰市| 伊金霍洛旗| 石楼县| 青铜峡市| 军事| 千阳县| 虞城县| 广昌县| 乐陵市| 静安区| 龙泉市| 陈巴尔虎旗| 南开区| 普定县| 诸暨市| 兴义市| 万全县| 鄂伦春自治旗| 原阳县| 高碑店市| 乐至县| 张家川| 汕尾市| 吉木乃县| 平昌县| 玛纳斯县| 珠海市| 政和县| 西和县| 交城县| 武平县| 资源县| 合作市| 东乡族自治县| 绥阳县|