找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Anti-Differentiation and the Calculation of Feynman Amplitudes; Johannes Blümlein,Carsten Schneider Book 2021 The Editor(s) (if applicable

[復制鏈接]
樓主: Deflated
31#
發(fā)表于 2025-3-26 22:01:13 | 只看該作者
Integration-by-Parts: A Survey,We present an overview of the field of Integration-By-Parts with special emphasis on Laporta’s algorithm. We give an overview of the problems associated with Laporta’s algorithm and try to illustrate possible ways out.
32#
發(fā)表于 2025-3-27 01:40:53 | 只看該作者
33#
發(fā)表于 2025-3-27 07:47:12 | 只看該作者
34#
發(fā)表于 2025-3-27 11:35:05 | 只看該作者
,N =? 4 SYM Gauge Theories: The 2?→?6 Amplitude in the Regge Limit,ty and energy discontinuities, and the analytic structure plays a vital role. We first summarize the lessons learned from the study of the remainder functions of the 2?→?4 and the 2?→?5 scattering amplitudes and then present new results for the 2?→?6 amplitude.
35#
發(fā)表于 2025-3-27 13:53:27 | 只看該作者
36#
發(fā)表于 2025-3-27 18:11:21 | 只看該作者
37#
發(fā)表于 2025-3-28 00:08:02 | 只看該作者
Calculating Four-Loop Corrections in QCD,rs, with specific focus on deep-inelastic scattering and electron-positron annihilation. The calculations build on the parametric reduction of loop and phase space integrals up to four-loop order using computer algebra programs such as ., designed for large scale computations.
38#
發(fā)表于 2025-3-28 03:21:38 | 只看該作者
Expansion by Regions: An Overview,en limit where some kinematic invariants and/or masses have certain scaling measured in powers of a given small parameter. Prescriptions of this strategy are formulated in a simple geometrical language and are illustrated through simple examples.
39#
發(fā)表于 2025-3-28 06:31:56 | 只看該作者
https://doi.org/10.1007/978-3-030-80219-6elliptic integrals and functions; iterated modular functions; iterated integrals; massive high loop Fey
40#
發(fā)表于 2025-3-28 10:41:32 | 只看該作者
978-3-030-80221-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
民权县| 新巴尔虎右旗| 万山特区| 桐柏县| 从化市| 依安县| 荔浦县| 方正县| 奉贤区| 连州市| 武乡县| 喀什市| 庐江县| 溧水县| 晋江市| 广汉市| 修文县| 大荔县| 广州市| 财经| 金山区| 张家界市| 乌海市| 永州市| 滦平县| 乐陵市| 高雄市| 铜鼓县| 遂川县| 广水市| 城步| 阿城市| 淅川县| 大名县| 上饶县| 日喀则市| 罗山县| 陆良县| 鄢陵县| 曲阜市| 天峨县|