找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Angewandte Funktionalanalysis; Funktionalanalysis, Manfred Dobrowolski Textbook 2010Latest edition Springer-Verlag Berlin Heidelberg 2010

[復(fù)制鏈接]
樓主: 無力向前
11#
發(fā)表于 2025-3-23 13:22:10 | 只看該作者
Die Vereinbarkeit mit EU-GrundrechtenIn diesem Kapitel ist . immer ein beschr?nktes Gebiet des . und alle Funktionenr?ume sind reell.
12#
發(fā)表于 2025-3-23 17:23:29 | 只看該作者
13#
發(fā)表于 2025-3-23 18:57:29 | 只看該作者
https://doi.org/10.1007/978-3-658-45626-9In diesem Kapitel werden alle Funktionenr?ume als komplex vorausgesetzt.
14#
發(fā)表于 2025-3-24 00:35:16 | 只看該作者
,Topologische und metrische R?ume,In der Analysis des . kann man mit dem Begriff der offenen Menge die Konvergenz von Folgen definieren: Eine Folge im . . gegen ein . ∈ ., wenn in jeder offenen Menge, die . enth?lt, fast alle Folgenglieder liegen. Durch die topologischen R?ume werden diese Strukturen auf allgemeine Mengen übertragen.
15#
發(fā)表于 2025-3-24 03:27:31 | 只看該作者
16#
發(fā)表于 2025-3-24 10:13:56 | 只看該作者
17#
發(fā)表于 2025-3-24 14:42:50 | 只看該作者
,Die Lebesgue-R?ume ,,(,),Es wird vorausgesetzt, da? der Leser mit den Grundlagen der Lebesgue-Integration vertraut ist. Dieser Abschnitt soll nur die wichtigsten Begriffe und S?tze wiederholen. Für eine genauere Darstellung sei z.B. auf das Buch von Halmos [Hal50] verwiesen.
18#
發(fā)表于 2025-3-24 17:05:38 | 只看該作者
,Die Sobolev-R?ume ,,(,),In diesem Abschnitt sind ausnahmsweise alle Funktionen reellwertig. Wie zuvor bezeichnen wir mit . den Raum der me?baren Funktionen ., die auf jeder Menge . integrierbar sind.
19#
發(fā)表于 2025-3-24 20:53:54 | 只看該作者
,Fortsetzungs- und Einbettungss?tze für Sobolev-Funktionen,In den Abschnitten 6.1-6.10 werden alle Gebiete als beschr?nkt vorausgesetzt.
20#
發(fā)表于 2025-3-25 03:06:24 | 只看該作者
Elliptische Differentialgleichungen,In diesem Kapitel ist . immer ein beschr?nktes Gebiet des . und alle Funktionenr?ume sind reell.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扶余县| 景德镇市| 温州市| 郁南县| 林周县| 神木县| 平昌县| 邵武市| 澜沧| 务川| 肥城市| 田林县| 马公市| 双城市| 赫章县| 泰顺县| 利津县| 石家庄市| 竹溪县| 临泽县| 姜堰市| 永宁县| 宝丰县| 三穗县| 东乡族自治县| 颍上县| 伽师县| 阿合奇县| 怀宁县| 宜阳县| 兴业县| 眉山市| 日土县| 班玛县| 鄂伦春自治旗| 龙川县| 称多县| 贡觉县| 江永县| 新平| 梅州市|