找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ane‘s Encyclopedic Dictionary of General & Applied Entomology; M. S. Dhooria Book 2008 Springer Science+Business Media B.V. 2008 Agricultu

[復(fù)制鏈接]
樓主: 有靈感
31#
發(fā)表于 2025-3-27 00:33:42 | 只看該作者
32#
發(fā)表于 2025-3-27 01:55:58 | 只看該作者
Ye Lei,Lin Huithe 0/1 knapsack problem. Furthermore, we can significantly improve the known results on the running time of heuristics for the bounded knapsack problem and for the bicriteria shortest path problem. Finally, our results also enable us to improve and simplify the previously known analysis of the smoo
33#
發(fā)表于 2025-3-27 09:11:14 | 只看該作者
34#
發(fā)表于 2025-3-27 12:16:30 | 只看該作者
Fehlerrechnung und statistische Methoden,lued was not taken into account. Taking this into account requires us to add one more term to (1.2.9). This term represents a . which we shall discuss below first for the problem of spherical-wave reflection from a homogeneous halfspace, and then for more general sound sources and complicated environments.
35#
發(fā)表于 2025-3-27 14:38:52 | 只看該作者
36#
發(fā)表于 2025-3-27 20:48:30 | 只看該作者
On Polynomially Integrable Domains in Euclidean Spaces,-dimensional volume of the intersection . with the hyperplane . If the domain . is an ellipsoid, then the function .. is algebraic and if, in addition, the dimension . is odd, then .?(., .) is a polynomial with respect to .. Whether odd-dimensional ellipsoids are the only bounded smooth domains with
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 22:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永顺县| 烟台市| 游戏| 龙井市| 东光县| 泰安市| 达拉特旗| 琼海市| 瑞安市| 沙田区| 广宗县| 石首市| 漾濞| 阳西县| 乐安县| 和静县| 望谟县| 桂阳县| 高平市| 丁青县| 谢通门县| 来安县| 绥阳县| 蚌埠市| 丘北县| 太仆寺旗| 武冈市| 康平县| 岳阳市| 黄梅县| 科技| 泽库县| 南陵县| 平潭县| 孝昌县| 尉氏县| 昭平县| 九龙坡区| 武乡县| 河北省| 左云县|