找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Andreotti-Grauert Theory by Integral Formulas; Gennadi M. Henkin,Jürgen Leiterer Book 1988 Springer Science+Business Media New York 1988 a

[復(fù)制鏈接]
樓主: 啞劇表演
11#
發(fā)表于 2025-3-23 10:39:09 | 只看該作者
12#
發(fā)表于 2025-3-23 15:25:03 | 只看該作者
13#
發(fā)表于 2025-3-23 21:51:50 | 只看該作者
0743-1643 Overview: 978-0-8176-3413-1978-1-4899-6724-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
14#
發(fā)表于 2025-3-23 22:55:36 | 只看該作者
https://doi.org/10.1007/978-1-4899-6724-4analysis; Integral; integral equation; mathematics
15#
發(fā)表于 2025-3-24 06:13:33 | 只看該作者
16#
發(fā)表于 2025-3-24 07:04:33 | 只看該作者
Integral Formulas and First Applications,the arguments which lead from the Poincaré .-lemma and the regularity of the ??-operator to the Dolbeault isomorphism and the theorem on smoothing of the .-cohomology. In Sect. 3 we prove a generalization of the Cauchy-Fantappie formula, which will be called the . Cauchy-Fantappie formula. This form
17#
發(fā)表于 2025-3-24 13:36:50 | 只看該作者
The Cauchy-Riemann Equation on q-Convex Manifolds, then dim H. (X, E) < ∞ for all r≥n?q, where, in the . q-convex case, even H. (X, E) = 0 for all r≥n?q. Also in Sect. 12, we prove the following supplement to Theorem 11.2: If D is a non-degenerate . q-convex domain in an n-dimensional complex manifold X, and E is a holomorphic vector bundle over X,
18#
發(fā)表于 2025-3-24 14:59:46 | 只看該作者
The Cauchy-Riemann Equation on q-Concave Manifolds,r≤q?1 admit uniquely determined continuations along such extensions (for r=0, this is the global Hartogs extension phenomenon for holomorphic functions). Moreover, corresponding results with uniform estimates are obtained. At the end of Sect. 15 we prove the classical Andreotti-Grauert finiteness th
19#
發(fā)表于 2025-3-24 22:23:05 | 只看該作者
O. Pongs,R. Bald,V. A. Erdmann,E. Reinwaldthe arguments which lead from the Poincaré .-lemma and the regularity of the ??-operator to the Dolbeault isomorphism and the theorem on smoothing of the .-cohomology. In Sect. 3 we prove a generalization of the Cauchy-Fantappie formula, which will be called the . Cauchy-Fantappie formula. This form
20#
發(fā)表于 2025-3-25 00:48:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 06:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定安县| 隆尧县| 宝鸡市| 公主岭市| 石棉县| 收藏| 忻城县| 芮城县| 皮山县| 乌海市| 浦县| 巢湖市| 师宗县| 文昌市| 资兴市| 曲水县| 右玉县| 洪泽县| 威信县| 东源县| 河津市| 平顶山市| 嘉善县| 苏尼特右旗| 固安县| 长阳| 濮阳县| 云浮市| 确山县| 石台县| 化德县| 湘潭县| 清水河县| 哈密市| 彰武县| 六枝特区| 永定县| 思南县| 兴山县| 阜宁县| 自贡市|