找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic-Bilinear Approach to Integrable Hierarchies; L. V. Bogdanov Book 1999 Springer Science+Business Media Dordrecht 1999 Complex anal

[復(fù)制鏈接]
樓主: ISSUE
11#
發(fā)表于 2025-3-23 10:09:22 | 只看該作者
Book 1999e of the a-dressing method is suitable for applications to integrable nonlinear PDEs, integrable nonlinear discrete equations, and, as recently discovered, for t.he applications of integrable systems to continuous and discret.e geometry. The primary motivation of the author was to formalize the appr
12#
發(fā)表于 2025-3-23 16:50:47 | 只看該作者
he language of the a-dressing method is suitable for applications to integrable nonlinear PDEs, integrable nonlinear discrete equations, and, as recently discovered, for t.he applications of integrable systems to continuous and discret.e geometry. The primary motivation of the author was to formalize the appr978-94-010-5922-0978-94-011-4495-7
13#
發(fā)表于 2025-3-23 19:05:57 | 只看該作者
14#
發(fā)表于 2025-3-23 22:21:42 | 只看該作者
Rational Loops and Integrable Discrete Equations. I: Zero Local Indices,unit disc, with the dynamics induced by the subgroup of rational loops of the group Γ., where Γ. is defined as a group of analytic loops having no zeros outside the unit circle and equal to 1 at infinity. We will investigate in detail the equations corresponding to the set of different loops with on
15#
發(fā)表于 2025-3-24 04:48:37 | 只看該作者
16#
發(fā)表于 2025-3-24 08:40:19 | 只看該作者
Generalized KP Hierarchy,y connected with two of them, namely the Sato approach [.] (see also [., ., ., ., .]) and the ˉ?-dressing method [., ., ., .]. The main elements of the consistent analytic-bilinear approach to integrable hierarchies were developed in [.], [.] (see also [.], [.]).
17#
發(fā)表于 2025-3-24 11:40:19 | 只看該作者
18#
發(fā)表于 2025-3-24 17:37:26 | 只看該作者
19#
發(fā)表于 2025-3-24 22:59:57 | 只看該作者
20#
發(fā)表于 2025-3-25 01:38:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 21:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂阳县| 杭锦旗| 赣州市| 乐陵市| 象山县| 达州市| 桃园县| 奉化市| 普陀区| 漳州市| 南通市| 临猗县| 黄浦区| 米易县| 永川市| 大城县| 华池县| 曲沃县| 壶关县| 确山县| 额尔古纳市| 甘德县| 和林格尔县| 都昌县| 宜宾县| 丹东市| 台江县| 惠来县| 富平县| 合川市| 达拉特旗| 信阳市| 襄垣县| 霍邱县| 舞钢市| 潼关县| 彩票| 朔州市| 永州市| 闽清县| 余庆县|