找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Number Theory, Modular Forms and q-Hypergeometric Series; In Honor of Krishna George E. Andrews,Frank Garvan Conference proceedin

[復(fù)制鏈接]
樓主: VER
11#
發(fā)表于 2025-3-23 10:17:53 | 只看該作者
12#
發(fā)表于 2025-3-23 17:22:15 | 只看該作者
13#
發(fā)表于 2025-3-23 21:38:38 | 只看該作者
14#
發(fā)表于 2025-3-24 01:52:37 | 只看該作者
15#
發(fā)表于 2025-3-24 03:23:31 | 只看該作者
,The Alladi–Schur Polynomials and Their Factorization, multiple of 3. Subsequently, the theorem was refined to count also the number of parts in the relevant partitions. In this paper, a surprising factorization of the related polynomial generating functions is developed.
16#
發(fā)表于 2025-3-24 09:18:47 | 只看該作者
New Representations for , via Reciprocity Theorems,ization of a recent transformation of Andrews, Schultz, Yee, and the second author. The advantage of these representations is that they involve free complex parameters—one in the first representation, and two in the second. In the course of obtaining these results, we arrive at one- and two-variable generalizations of ..
17#
發(fā)表于 2025-3-24 10:57:29 | 只看該作者
18#
發(fā)表于 2025-3-24 16:48:28 | 只看該作者
Integral Points on a Very Flat Convex Curve, means that one has . for some .. He also proved that when ., the quantity . is bounded. In this paper, the authors prove that in general the bound (*) cannot be improved for .curves, i.e. those for which .; however, if one imposes a 0 tangent at one extremity of the curve, then (*) is replaced by the sharper inequality ..
19#
發(fā)表于 2025-3-24 22:43:10 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:39 | 只看該作者
Contributions to Management Sciencenderlying identities for three-colored partitions. In this paper, we continue our investigation of companions to Capparelli’s identities, and prove two new general identities for three-colored partitions that specialize to Jacobi theta functions and false theta functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金秀| 泸溪县| 弋阳县| 余干县| 应用必备| 泸州市| 平遥县| 思南县| 永丰县| 永靖县| 北安市| 孝昌县| 达拉特旗| 奉节县| 宜兰市| 保康县| 平昌县| 通辽市| 镇平县| 化隆| 遂川县| 金塔县| 抚州市| 德清县| 莱阳市| 宁远县| 肃宁县| 海城市| 闽侯县| 漯河市| 周口市| 桃江县| 会泽县| 万山特区| 习水县| 科技| 清镇市| 军事| 虹口区| 松原市| 琼海市|