找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Number Theory, Approximation Theory, and Special Functions; In Honor of Hari M. Gradimir V. Milovanovi?,Michael Th. Rassias Book

[復(fù)制鏈接]
樓主: 迅速
21#
發(fā)表于 2025-3-25 03:27:20 | 只看該作者
22#
發(fā)表于 2025-3-25 09:11:29 | 只看該作者
The Mean Values of the Riemann Zeta-Function on the Critical LineIn this overview we give a detailed discussion of power moments of .(.), when . lies on the “critical line” .. The survey includes early results, the mean square and mean fourth power, higher moments, conditional results and some open problems.
23#
發(fā)表于 2025-3-25 13:42:15 | 只看該作者
Explicit Bounds Concerning Non-trivial Zeros of the Riemann Zeta FunctionIn this paper, we get explicit upper and lower bounds for .., where . are consecutive ordinates of non-trivial zeros . of the Riemann zeta function. Meanwhile, we obtain the asymptotic relation . as . → ..
24#
發(fā)表于 2025-3-25 19:21:11 | 只看該作者
Identities for Reciprocal BinomialsEuler’s results related to the sum of the ratios of harmonic numbers and binomial coefficients are investigated in this paper. We give a particular example involving quartic binomial coefficients.
25#
發(fā)表于 2025-3-25 22:06:24 | 只看該作者
A Note on ,-Stirling NumbersThe .-Stirling numbers of both kinds are specializations of the complete or elementary symmetric functions. In this note, we use this fact to prove that the .-Stirling numbers can be expressed in terms of the .-binomial coefficients and vice versa.
26#
發(fā)表于 2025-3-26 03:17:51 | 只看該作者
A Survey on Cauchy–Bunyakovsky–Schwarz Inequality for Power SeriesIn this paper, we present a survey of some recent results for the celebrated Cauchy–Bunyakovsky–Schwarz inequality for functions defined by power series with nonnegative coefficients. Particular examples for fundamental functions of interest are presented. Applications for some special functions are given as well.
27#
發(fā)表于 2025-3-26 04:22:56 | 只看該作者
28#
發(fā)表于 2025-3-26 08:52:12 | 只看該作者
29#
發(fā)表于 2025-3-26 16:21:18 | 只看該作者
https://doi.org/10.1007/978-1-4939-0258-3Analytic Number Theory; Approximation theory; Riemann Hypothesis; additive number theory; hypergeometric
30#
發(fā)表于 2025-3-26 20:05:26 | 只看該作者
978-1-4939-4538-2Springer Science+Business Media New York 2014
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 20:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
周宁县| 海兴县| 平原县| 丰原市| 芜湖市| 大姚县| 东光县| 宜宾县| 高邑县| 青铜峡市| 大邑县| 左云县| 贵溪市| 武城县| 建水县| 金溪县| 晋州市| 东明县| 济阳县| 磐石市| 夏邑县| 东平县| 邢台市| 云安县| 景东| 湟源县| 延津县| 泾阳县| 容城县| 开阳县| 弋阳县| 临澧县| 白水县| 彝良县| 珲春市| 漳平市| 会泽县| 沙河市| 梁平县| 虎林市| 宜州市|