找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Number Theory; Chaohua Jia,Kohji Matsumoto Book 2002 Springer Science+Business Media Dordrecht 2002 Arithmetic.Diophantine approx

[復(fù)制鏈接]
樓主: 精明
21#
發(fā)表于 2025-3-25 04:49:48 | 只看該作者
Pierpaolo Basile,Barbara McGillivraycongruence. As applications, we mention some generalizations of Morley’s congruence and Jacobstahl’s Theorem to modulo arbitary positive integers. The details of the proof will partly appear in Acta Arithmetica.
22#
發(fā)表于 2025-3-25 10:50:37 | 只看該作者
Alja? Osojnik,Pan?e Panov,Sa?o D?eroskis that . for an irrational number . of finite type .. We show further that if . is an irrational number of constant type, then the discrepancy of the sequence . We extend the results much more by van der Corput’s inequality.
23#
發(fā)表于 2025-3-25 13:36:50 | 只看該作者
24#
發(fā)表于 2025-3-25 17:02:08 | 只看該作者
Pawel Matuszyk,Myra Spiliopoulou....1, .. ≥ 0, and the minimal polynomial of . is given by .. ? .... ? ... ? ... ? 1. From the substitution associated with the Pisot number ., a domain with a fractal boundary, called atomic surface, is constructed. The essential point of the proof is to define a natural extension of the .-transfor
25#
發(fā)表于 2025-3-26 00:04:11 | 只看該作者
Sarah D’Ettorre,Herna L. Viktor,Eric Paquet-functions in question are the most general E. Landau’s type ones that satisfy the functional equations with multiple gamma factors..Instead of simply applying Landau’s colossal theorem to . .(.), we start from the functional equation satisfied by .(.) and raise it to the .-th power. This, together
26#
發(fā)表于 2025-3-26 03:10:22 | 只看該作者
Kazuto Fukuchi,Quang Khai Tran,Jun Sakuma → 0. Our proof is based on the results on Barnes’ double zeta-functions given in the author’s former article [12]. We also prove asymptotic expansions of log Γ.Γ.(2.. ? 1, (.. ? 1, .)) , log ..(ε. ? 1, ..) and log ..(ε., ε., ε.), where .. is the fundamental unit of .% MathType!MTEF!2!1!+-% feaagCar
27#
發(fā)表于 2025-3-26 05:13:11 | 只看該作者
28#
發(fā)表于 2025-3-26 09:04:31 | 只看該作者
29#
發(fā)表于 2025-3-26 15:32:40 | 只看該作者
30#
發(fā)表于 2025-3-26 17:40:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 06:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家川| 静宁县| 安平县| 淮安市| 沽源县| 永福县| 乐昌市| 抚州市| 兖州市| 印江| 太和县| 商丘市| 梁山县| 兴海县| 凤山县| 城口县| 大渡口区| 三原县| 清镇市| 会理县| 保康县| 淳安县| 沈阳市| 庆城县| 土默特右旗| 贵南县| 苏尼特左旗| 荃湾区| 胶南市| 河北区| 新野县| 新巴尔虎左旗| 青铜峡市| 贡山| 鸡东县| 竹山县| 中宁县| 乌鲁木齐县| 聂荣县| 图们市| 普兰县|