找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Number Theory; Proceedings of a Con Bruce C. Berndt,Harold G. Diamond,Adolf Hildebrand Conference proceedings 1990 Birkh?user Bost

[復(fù)制鏈接]
樓主: 并排一起
31#
發(fā)表于 2025-3-26 22:33:59 | 只看該作者
Discovering Mathematics with MapleThe question of the horizontal distribution of the zeros of derivatives of Riemann’s zeta-function is an interesting one in view of its connection with the Riemann Hypothesis.
32#
發(fā)表于 2025-3-27 02:42:28 | 只看該作者
33#
發(fā)表于 2025-3-27 08:48:29 | 只看該作者
Vector Spaces and Linear Mappings,We use the letter . to denote positive integers. Ω(.) is the number of prime factors in the factorization of ., counted with multiplicity.
34#
發(fā)表于 2025-3-27 12:22:18 | 只看該作者
35#
發(fā)表于 2025-3-27 15:10:21 | 只看該作者
Evaluations of Selberg Character Sums,The .-dimensional Selberg character sums .. (.) are evaluated for all . ≥ 0 when the character . is trivial or quadratic. Additional character sum evaluations related to integral formulas of Selberg are conjectured.
36#
發(fā)表于 2025-3-27 21:47:10 | 只看該作者
37#
發(fā)表于 2025-3-28 01:20:11 | 只看該作者
38#
發(fā)表于 2025-3-28 05:57:33 | 只看該作者
39#
發(fā)表于 2025-3-28 10:09:47 | 只看該作者
Zeros of Derivatives Of the Riemann Zeta-Function Near the Critical Line,The question of the horizontal distribution of the zeros of derivatives of Riemann’s zeta-function is an interesting one in view of its connection with the Riemann Hypothesis.
40#
發(fā)表于 2025-3-28 10:45:44 | 只看該作者
On some Exponential Sums,Let . be a multiplicative function, and let α be an irrational number. In this paper we want to estimate the exponential sum .. If . is the constant multiplicative function 1 then trivially . in fact, the sum is bounded in this case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金溪县| 嘉祥县| 古交市| 团风县| 牙克石市| 林芝县| 香格里拉县| 集贤县| 西华县| 连城县| 旅游| 隆林| 新巴尔虎右旗| 湘潭县| 朔州市| 长汀县| 南城县| 鹤壁市| 平利县| 绵竹市| 枣强县| 益阳市| 七台河市| 宜宾市| 北宁市| 博兴县| 连山| 营口市| 额济纳旗| 信宜市| 日喀则市| 泸州市| 桓仁| 三都| 武陟县| 宜良县| 玉田县| 富阳市| 温州市| 奉新县| 会理县|