找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Symbolic Data; Exploratory Methods Hans-Hermann Bock,Edwin Diday Conference proceedings 2000 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
查看: 32949|回復(fù): 59
樓主
發(fā)表于 2025-3-21 17:48:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analysis of Symbolic Data
期刊簡(jiǎn)稱Exploratory Methods
影響因子2023Hans-Hermann Bock,Edwin Diday
視頻videohttp://file.papertrans.cn/157/156452/156452.mp4
學(xué)科分類Studies in Classification, Data Analysis, and Knowledge Organization
圖書封面Titlebook: Analysis of Symbolic Data; Exploratory Methods  Hans-Hermann Bock,Edwin Diday Conference proceedings 2000 Springer-Verlag Berlin Heidelberg
影響因子Raymond Bisdorff CRP-GL, Luxembourg The development of the SODAS software based on symbolic data analysis was extensively described in the previous chapters of this book. It was accompanied by a series of benchmark activities involving some official statistical institutes throughout Europe. Partners in these benchmark activities were the National Statistical Institute (INE) of Portugal, the Instituto Vasco de Estadistica Euskal (EUSTAT) from Spain, the Office For National Statistics (ONS) from the United Kingdom, the Inspection Generale de la Securite Sociale (IGSS) from Luxembourg 1 and marginally the University of Athens . The principal goal of these benchmark activities was to demonstrate the usefulness of symbolic data analysis for practical statistical exploitation and analysis of official statistical data. This chapter aims to report briefly on these activities by presenting some signifi- cant insights into practical results obtained by the benchmark partners in using the SODAS software package as described in chapter 14 below.
Pindex Conference proceedings 2000
The information of publication is updating

書目名稱Analysis of Symbolic Data影響因子(影響力)




書目名稱Analysis of Symbolic Data影響因子(影響力)學(xué)科排名




書目名稱Analysis of Symbolic Data網(wǎng)絡(luò)公開度




書目名稱Analysis of Symbolic Data網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analysis of Symbolic Data被引頻次




書目名稱Analysis of Symbolic Data被引頻次學(xué)科排名




書目名稱Analysis of Symbolic Data年度引用




書目名稱Analysis of Symbolic Data年度引用學(xué)科排名




書目名稱Analysis of Symbolic Data讀者反饋




書目名稱Analysis of Symbolic Data讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:28:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:17:55 | 只看該作者
地板
發(fā)表于 2025-3-22 05:07:58 | 只看該作者
Lars Holtkamp,Nils Arne Brockmannmplex type of data which we call . as they contain . and they are . In this context, we have a rapidly increasing need to extend standard data analysis methods (exploratory, graphical representations, clustering, factorial analysis, discrimination,…) to these symbolic data.
5#
發(fā)表于 2025-3-22 12:08:36 | 只看該作者
6#
發(fā)表于 2025-3-22 14:45:38 | 只看該作者
https://doi.org/10.1007/978-3-322-80430-3se similarities as their data input. For example, in cluster analysis where we look for ‘homogeneous’ classes ., .,… of objects, it is typically required that pairs of objects from the . class have a . similarity (i.e., a . dissimilarity) and, conversely, that the similarity is . for pairs of objects from. classes (see Section 11.1).
7#
發(fā)表于 2025-3-22 20:50:52 | 只看該作者
8#
發(fā)表于 2025-3-23 01:15:46 | 只看該作者
Symbolic Data Analysis and the SODAS Project: Purpose, History, Perspective,mplex type of data which we call . as they contain . and they are . In this context, we have a rapidly increasing need to extend standard data analysis methods (exploratory, graphical representations, clustering, factorial analysis, discrimination,…) to these symbolic data.
9#
發(fā)表于 2025-3-23 01:51:58 | 只看該作者
10#
發(fā)表于 2025-3-23 06:23:38 | 只看該作者
Similarity and Dissimilarity,se similarities as their data input. For example, in cluster analysis where we look for ‘homogeneous’ classes ., .,… of objects, it is typically required that pairs of objects from the . class have a . similarity (i.e., a . dissimilarity) and, conversely, that the similarity is . for pairs of objects from. classes (see Section 11.1).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荆州市| 方城县| 鲁甸县| 连城县| 靖江市| 滨州市| 济阳县| 鹤峰县| 阿城市| 囊谦县| 同德县| 南昌市| 常州市| 迭部县| 横峰县| 石嘴山市| 盐边县| 霍州市| 鄂托克前旗| 那坡县| 望都县| 武汉市| 民乐县| 富裕县| 临湘市| 玉环县| 常宁市| 郯城县| 孝义市| 来宾市| 白玉县| 文成县| 道真| 博兴县| 清丰县| 沿河| 东丽区| 辽阳县| 吉安市| 尚义县| 凤阳县|