找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Images, Social Networks and Texts; 9th International Co Wil M. P. van der Aalst,Vladimir Batagelj,Elena Tu Conference proceedin

[復(fù)制鏈接]
樓主: 不能平庸
41#
發(fā)表于 2025-3-28 16:07:44 | 只看該作者
https://doi.org/10.1007/978-3-8348-9370-3s. ELMo and BERT architectures are compared on the task of ranking Russian words according to the degree of their semantic change over time. We use several methods for aggregation of contextualized embeddings from these architectures and evaluate their performance. Finally, we compare unsupervised and supervised techniques in this task.
42#
發(fā)表于 2025-3-28 22:35:59 | 只看該作者
43#
發(fā)表于 2025-3-29 01:52:19 | 只看該作者
44#
發(fā)表于 2025-3-29 03:52:30 | 只看該作者
45#
發(fā)表于 2025-3-29 08:00:57 | 只看該作者
Programmierbare Logikbausteine,ads of high-quality media that publishes news in accordance with the classical model. We prove dataset eligibility for training by building an abstractive summarization framework based on pre-trained language models and comparing summarization results with extractive baselines.
46#
發(fā)表于 2025-3-29 14:59:34 | 只看該作者
https://doi.org/10.1007/978-3-8348-9038-2l word representations outperform previously proposed feature-based models for discourse relation classification. By ensembling both methods, we are able to further improve the performance of the discourse relation classification achieving the new state of the art for Russian.
47#
發(fā)表于 2025-3-29 18:58:49 | 只看該作者
Abstractive Summarization of Russian News Learning on Quality Mediaads of high-quality media that publishes news in accordance with the classical model. We prove dataset eligibility for training by building an abstractive summarization framework based on pre-trained language models and comparing summarization results with extractive baselines.
48#
發(fā)表于 2025-3-29 20:42:57 | 只看該作者
RST Discourse Parser for Russian: An Experimental Study of Deep Learning Modelsl word representations outperform previously proposed feature-based models for discourse relation classification. By ensembling both methods, we are able to further improve the performance of the discourse relation classification achieving the new state of the art for Russian.
49#
發(fā)表于 2025-3-30 01:52:24 | 只看該作者
Conference proceedings 2021ers are organized in topical sections as follows: invited papers; natural language processing; computer vision; social network analysis; data analysis and machine learning; theoretical machine learning and optimization; and process mining. ..?.
50#
發(fā)表于 2025-3-30 07:22:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
本溪市| 十堰市| 财经| 四会市| 横峰县| 寿阳县| 河源市| 宁明县| 文登市| 昌图县| 横山县| 澄城县| 望城县| 醴陵市| 渭源县| 康马县| 余姚市| 桐梓县| 台州市| 郁南县| 淅川县| 台北县| 平邑县| 北碚区| 同心县| 浑源县| 政和县| 三亚市| 蓝田县| 互助| 巩留县| 额尔古纳市| 建昌县| 徐州市| 汶上县| 明溪县| 湘潭市| 冷水江市| 江达县| 五峰| 台湾省|