找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Discretization Methods for Ordinary Differential Equations; Hans J. Stetter Book 1973 Springer-Verlag Berlin Heidelberg 1973 A

[復(fù)制鏈接]
樓主: Hoover
21#
發(fā)表于 2025-3-25 04:28:10 | 只看該作者
22#
發(fā)表于 2025-3-25 07:34:03 | 只看該作者
23#
發(fā)表于 2025-3-25 13:11:48 | 只看該作者
24#
發(fā)表于 2025-3-25 18:33:47 | 只看該作者
Linear Multistep Methods,ituation is sufficiently interesting and by no means trivial. Many of the results obtained will serve as background material in the treatment of more general classes of multistep methods in Chapter 5.
25#
發(fā)表于 2025-3-25 21:54:44 | 只看該作者
https://doi.org/10.1007/978-3-662-36828-2nd their applications, although we have not elaborated on this. The chapter is concluded by a few remarks on the practical aspects of “solving” ordinary differential equations by discretization methods.
26#
發(fā)表于 2025-3-26 03:11:05 | 只看該作者
27#
發(fā)表于 2025-3-26 05:18:02 | 只看該作者
Lisa Unterberg,Miguel Zulaica y Mugicaituation is sufficiently interesting and by no means trivial. Many of the results obtained will serve as background material in the treatment of more general classes of multistep methods in Chapter 5.
28#
發(fā)表于 2025-3-26 09:10:02 | 只看該作者
Book 1973ical values of solutions to differential equations. Nearly all approaches to this task involve a "finitization" of the original differential equation problem, usually by a projection into a finite-dimensional space. By far the most popular of these finitization processes consists of a reduction to a
29#
發(fā)表于 2025-3-26 15:36:14 | 只看該作者
Analysis of Discretization Methods for Ordinary Differential Equations
30#
發(fā)表于 2025-3-26 19:02:41 | 只看該作者
Book 1973heir discrete analogues is a very hard subject, and progress is consequently slow, the initial value problem for a system of first order ordinary differential equations lends itself so naturally to discretization that hundreds of numerical analysts have felt inspired to invent an ever-increasing num
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
迁西县| 乐昌市| 黄浦区| 瑞丽市| 利津县| 克拉玛依市| 巨鹿县| 楚雄市| 启东市| 星座| 麻阳| 卢氏县| 宁德市| 安徽省| 涟水县| 乌鲁木齐县| 象州县| 凌源市| 南开区| 永宁县| 资中县| 宁波市| 石河子市| 湖南省| 察隅县| 许昌市| 丘北县| 玉树县| 远安县| 德阳市| 化隆| 房山区| 土默特左旗| 汝城县| 洪泽县| 油尖旺区| 民县| 哈巴河县| 长乐市| 广饶县| 仪征市|